Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Multiparton interactions and rescattering

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The concept of multiple partonic interactions in hadronic events is vital for the understanding of both minimum-bias and underlying-event physics. The area is rather little studied, however, and current models offer a far from complete coverage, even of the effects we know ought to be there. In this article we address one such topic, namely that of rescattering, where an already scattered parton is allowed to take part in another subsequent scattering. A framework for rescattering is introduced for the Pythia 8 event generator and fully integrated with normal multiparton interactions and initial- and final-state radiation. Using this model, the effects on event structure are studied, and distributions are shown both for minimum-bias and jet events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Sjöstrand and P.Z. Skands, Multiple interactions and the structure of beam remnants, JHEP 03 (2004) 053 [hep-ph/0402078] [SPIRES].

    Article  ADS  Google Scholar 

  2. T. Sjöstrand and M. van Zijl, A multiple interaction model for the event structure in hadron collisions, Phys. Rev. D 36 (1987) 2019 [SPIRES].

    ADS  Google Scholar 

  3. H.-U. Bengtsson and T. Sjöstrand, The Lund Monte Carlo for hadronic processes: PYTHIA version 4.8, Comput. Phys. Commun. 46 (1987) 43 [SPIRES].

    Article  ADS  Google Scholar 

  4. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [SPIRES].

    Article  ADS  Google Scholar 

  5. T. Sjöstrand and P.Z. Skands, Transverse-momentum-ordered showers and interleaved multiple interactions, Eur. Phys. J. C 39 (2005) 129 [hep-ph/0408302] [SPIRES].

    Article  ADS  Google Scholar 

  6. M. Sandhoff and P. Skands, Colour annealing — A toy model of colour reconnections, presented at Les Houches Workshop on Physics at TeV Colliders, May 2–20, Les Houches, France (2005).

  7. P.Z. Skands and D. Wicke, Non-perturbative QCD effects and the top mass at the Tevatron, Eur. Phys. J. C 52 (2007) 133 [hep-ph/0703081] [SPIRES].

    Article  ADS  Google Scholar 

  8. T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [SPIRES].

    Article  ADS  Google Scholar 

  9. R. Engel, Photoproduction within the two component dual parton model. 1. Amplitudes and cross-sections, Z. Phys. C 66 (1995) 203 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  10. R. Engel and J. Ranft, Hadronic photon-photon interactions at high-energies, Phys. Rev. D 54 (1996) 4244 [hep-ph/9509373] [SPIRES].

    ADS  Google Scholar 

  11. UA5 collaboration, G.J. Alner et al., The UA5 high-energy \( \bar pp \) simulation program, Nucl. Phys. B 291 (1987) 445 [SPIRES].

    Article  ADS  Google Scholar 

  12. G. Marchesini and B.R. Webber, Associated transverse energy in hadronic jet production, Phys. Rev. D 38 (1988) 3419 [SPIRES].

    ADS  Google Scholar 

  13. G. Marchesini et al., HERWIG: a Monte Carlo event generator for simulating hadron emission reactions with interfering gluons. Version 5.1 — April 1991, Comput. Phys. Commun. 67 (1992) 465 [SPIRES].

    Article  ADS  Google Scholar 

  14. J.M. Butterworth, J.R. Forshaw and M.H. Seymour, Multiparton interactions in photoproduction at HERA, Z. Phys. C 72 (1996) 637 [hep-ph/9601371] [SPIRES].

    ADS  Google Scholar 

  15. I. Borozan and M.H. Seymour, An eikonal model for multiparticle production in hadron hadron interactions, JHEP 09 (2002) 015 [hep-ph/0207283] [SPIRES].

    Article  ADS  Google Scholar 

  16. M. Bahr, S. Gieseke and M.H. Seymour, Simulation of multiple partonic interactions in HERWIG++, JHEP 07 (2008) 076 [arXiv:0803.3633] [SPIRES].

    Article  ADS  Google Scholar 

  17. M. Bahr et al., HERWIG++ physics and manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [SPIRES].

    Article  ADS  Google Scholar 

  18. Axial Field Spectrometer collaboration, T. Akesson et al., Double parton scattering in pp collisions at \( \sqrt s = 63\;GeV \), Z. Phys. C 34 (1987) 163 [SPIRES].

    ADS  Google Scholar 

  19. CDF collaboration, F. Abe et al., Double parton scattering in \( \bar pp \) collisions at \( \sqrt s = 1.8\;TeV \), Phys. Rev. D 56 (1997) 3811 [SPIRES].

    ADS  Google Scholar 

  20. D0 Collaboration, Double parton interactions in gamma+3 jet events in pp(bar) collisions at \( \sqrt s = 1.96\;TeV \) in D0, D0 NOTE 5910-CONF, http://www-d0.fnal.gov/Run2Physics/WWW/results/prelim/QCD/Q13/.

  21. CDF collaboration, R.D. Field, The underlying event in hard scattering processes, hep-ph/0201192 [SPIRES].

  22. CDF collaboration, R. Field and R.C. Group, PYTHIA tune A, HERWIG and JIMMY in Run 2 at CDF, hep-ph/0510198 [SPIRES].

  23. CDF Collaboration, R.D. Field, Studying the underlying event at CDF, presented at 33rd International Conference on High Energy Physics (ICHEP06), July 26–August 2, Moscow, Russia (2006).

  24. CDF collaboration, D. Kar, Measurement of the Underlying Event at Tevatron, arXiv:0905.2323 [SPIRES].

  25. R.D. Field, recent talks available at http://www.phys.ufl.edu/˜rfield/cdf/rdf_talks.html.

  26. UA1 collaboration, C. Albajar et al., Production of low transverse energy clusters in \( \bar pp \) collisions at \( \sqrt s = 0.2\;TeV \) to 0.9 TeV and their interpretation in terms of QCD jets, Nucl. Phys. B 309 (1988) 405 [SPIRES].

    Article  ADS  Google Scholar 

  27. P.Z. Skands, The Perugia tunes, arXiv:0905.3418 [SPIRES].

  28. A. Buckley, H. Hoeth, H. Lacker, H. Schulz and J.E. von Seggern, Systematic event generator tuning for the LHC, arXiv:0907.2973 [SPIRES].

  29. A. Moraes, C. Buttar and I. Dawson, Prediction for minimum bias and the underlying event at LHC energies, Eur. Phys. J. C 50 (2007) 435 [SPIRES].

    Article  ADS  Google Scholar 

  30. N. Paver and D. Treleani, Multiple parton interactions and multi-jet events at collider and Tevatron energies, Phys. Lett. B 146 (1984) 252 [SPIRES].

    ADS  Google Scholar 

  31. N. Paver and D. Treleani, Multiple parton processes in the TeV region, Z. Phys. C 28 (1985) 187 [SPIRES].

    ADS  Google Scholar 

  32. E. Cattaruzza and D. Treleani, Cronin effect and energy conservation constraints in high energy proton nucleus collisions, Phys. Rev. D 69 (2004) 094006 [hep-ph/0401067] [SPIRES].

    ADS  Google Scholar 

  33. J. Bartels, M. Salvadore and G.P. Vacca, AGK cutting rules and multiple scattering in hadronic collisions, Eur. Phys. J. C 42 (2005) 53 [hep-ph/0503049] [SPIRES].

    Article  ADS  Google Scholar 

  34. V.A. Khoze, A.D. Martin and M.G. Ryskin, On the role of hard rescattering in exclusive diffractive Higgs production, JHEP 05 (2006) 036 [hep-ph/0602247] [SPIRES].

    Article  ADS  Google Scholar 

  35. E. Avsar, G. Gustafson and L. Lönnblad, Small-x dipole evolution beyond the large-N c limit, JHEP 01 (2007) 012 [hep-ph/0610157] [SPIRES].

    ADS  Google Scholar 

  36. C. Flensburg, G. Gustafson and L. Lönnblad, Elastic and quasi-elastic pp and γ*p scattering in the dipole model, Eur. Phys. J. C 60 (2009) 233 [arXiv:0807.0325] [SPIRES].

    Article  ADS  Google Scholar 

  37. G. Calucci and D. Treleani, Multi-parton correlations and ‘exclusive’ cross sections, Phys. Rev. D 79 (2009) 074013 [arXiv:0901.3089] [SPIRES].

    ADS  Google Scholar 

  38. J.W. Cronin et al., Production of hadrons with large transverse momentum at 200 GeV, 300 GeV and 400 GeV, Phys. Rev. D 11 (1975) 3105 [SPIRES].

    ADS  Google Scholar 

  39. A. Donnachie and P.V. Landshoff, Total cross-sections, Phys. Lett. B 296 (1992) 227 [hep-ph/9209205] [SPIRES].

    ADS  Google Scholar 

  40. J. Dischler and T. Sjöstrand, A Toy model of color screening in the proton, Eur. Phys. J. direct C 3 (2001) 2 [hep-ph/0011282] [SPIRES].

    Google Scholar 

  41. G. Gustafson, L. Lönnblad and G. Miu, Hadronic collisions in the linked dipole chain model, Phys. Rev. D 67 (2003) 034020 [hep-ph/0209186] [SPIRES].

    ADS  Google Scholar 

  42. V.N. Gribov and L.N. Lipatov, Deep inelastic ep scattering in perturbation theory, Sov. J. Nucl. Phys. 15 (1972) 438 [SPIRES].

    Google Scholar 

  43. G. Altarelli and G. Parisi, Asymptotic freedom in parton language, Nucl. Phys. B 126 (1977) 298 [SPIRES].

    Article  ADS  Google Scholar 

  44. Y.L. Dokshitzer, Calculation of the structure functions for deep inelastic scattering and e + e annihilation by perturbation theory in quantum chromodynamics, Sov. Phys. JETP 46 (1977) 641 [SPIRES].

    ADS  Google Scholar 

  45. V.V. Sudakov, Vertex parts at very high-energies in quantum electrodynamics, Sov. Phys. JETP 3 (1956) 65 [SPIRES].

    MATH  MathSciNet  Google Scholar 

  46. T. Sjöstrand, A model for initial state parton showers, Phys. Lett. B 157 (1985) 321 [SPIRES].

    ADS  Google Scholar 

  47. M. Bengtsson, T. Sjöstrand and M. van Zijl, Initial state radiation effects on W and jet production, Z. Phys. C 32 (1986) 67 [SPIRES].

    ADS  Google Scholar 

  48. G. Gustafson, Dual description of a confined color field, Phys. Lett. B 175 (1986) 453 [SPIRES].

    ADS  Google Scholar 

  49. G. Gustafson and U. Pettersson, Dipole formulation of QCD cascades, Nucl. Phys. B 306 (1988) 746 [SPIRES].

    Article  ADS  Google Scholar 

  50. L. Lönnblad, ARIADNE version 4: a Program for simulation of QCD cascades implementing the color dipole model, Comput. Phys. Commun. 71 (1992) 15 [SPIRES].

    Article  ADS  Google Scholar 

  51. S. Catani and M.H. Seymour, A general algorithm for calculating jet cross sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [hep-ph/9605323] [SPIRES].

    Article  ADS  Google Scholar 

  52. H. Hoeth, private communication (2009).

  53. C. Buttar et al., The underlying event, in S. Alekhin et al., HERA and the LHC — A workshop on the implications of HERA for LHC physics: proceedings Part A, (2005), see page 192 [hep-ph/0601012] [SPIRES].

  54. M. Glück, E. Hoffmann, and E. Reya, Scaling violations and the gluon distribution of the nucleon, Zeit. Phys. C 13 (1982) 119 [].

    ADS  Google Scholar 

  55. CDF collaboration, T. Aaltonen et al., Measurement of particle production and inclusive differential cross sections in \( p\bar p \) collisions at \( \sqrt s = 1.96\;TeV \), Phys. Rev. D 79 (2009) 112005 [arXiv:0904.1098] [SPIRES].

    ADS  Google Scholar 

  56. M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the k t jet-finder, Phys. Lett. B641 (2006) 57 [hep-ph/0512210] [SPIRES].

    ADS  Google Scholar 

  57. M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [SPIRES].

    Article  ADS  Google Scholar 

  58. D. Binosi and L. Theussl, JaxoDraw: a graphical user interface for drawing Feynman diagrams, Comput. Phys. Commun. 161 (2004) 76 [hep-ph/0309015] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Corke.

Additional information

ArXiv ePrint: 0911.1909

Work supported by the Marie Curie Early Stage Training program “HEP-EST” (contract number MEST-CT-2005-019626) and in part by the Marie Curie RTN “MCnet” (contract number MRTN-CT-2006-035606)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corke, R., Sjöstrand, T. Multiparton interactions and rescattering. J. High Energ. Phys. 2010, 35 (2010). https://doi.org/10.1007/JHEP01(2010)035

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2010)035

Keywords

Navigation