Nothing Special   »   [go: up one dir, main page]

Skip to main content

Geometric singular perturbation theory

  • Chapter
  • First Online:
Dynamical Systems

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 1609))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 15.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. J. Alexander, R. Gardner & C. Jones, A topological invariant arising in the stability analysis of travelling waves, J. reine angew. Math. 410 (1990) 167–212.

    MathSciNet  MATH  Google Scholar 

  2. D. Aronson & H. Weinberger, Nonlinear diffusion in population genetics, combustion and nerve propagation, in Partial Differential Equations and Related Topics, J. Goldstein ed., Lecture Notes in Mathematics, 446 (1975), Springer-Verlag, New York.

    Chapter  Google Scholar 

  3. P. Bates & C. Jones, Invariant manifolds for semilinear partial differential equations, Dynamics Reported vol. 2, Wiley (1989), 1–38.

    Article  MathSciNet  MATH  Google Scholar 

  4. A.R. Bishop, M.G. Forest, D.W. McLaughlin and E.A. Overman II, Correlations between chaos in a perturbed Sine-Gordon equation and a truncated model system, SIAM J. Math. Anal. (1990) 1511–1536.

    Google Scholar 

  5. A. Bose, Existence and stability of travelling waves for coupled nerve axon equations, Ph.D. thesis, Brown U., 1993.

    Google Scholar 

  6. A. Bose & C. Jones, Stability of the in-phase travelling wave solution in a pair of coupled nerve fibers, preprint (1994).

    Google Scholar 

  7. G. Caginalp & P. Fife, Higher order phase field models and detailed anisotropy, Phys. Rev. B, 34 (1986) 4940–4943.

    Article  MathSciNet  Google Scholar 

  8. R. Camassa, On the geometry of a slow manifold, preprint (1994)

    Google Scholar 

  9. R. Camassa & S.-K. Tin, The global geometry of the slow manifold in Lorenz-Krishnamurthy model, preprint (1994).

    Google Scholar 

  10. G. Carpenter, A geometric approach to singular perturbation problems with applications to nerve impulse equations, JDE 23 (1977) 335–367.

    Article  MathSciNet  MATH  Google Scholar 

  11. K.W. Chang & F.A. Howes, Nonlinear Singular Perturbation Phenomena: Theory and Applications, Springer-Verlag, New York, 1984.

    Book  MATH  Google Scholar 

  12. B. Deng, The existence of infinitely many traveling front and back waves in the FitzHugh-Nagumo equations, SIAM J. Math. Anal. 6 (1991).

    Google Scholar 

  13. N. Ercolani, D. McLaughlin & H. Roitner, Attractors and transients for a perturbed periodic KdV equation: a nonlinear spectral analysis, J. Nonlin. Sci. in press.

    Google Scholar 

  14. J.W. Evans, Nerve impulse equations I–IV, Indiana Univ. Math. Journal, 21, 22, 24 (1972–5).

    Google Scholar 

  15. N. Fenichel, Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. Journal, 21 (1971) 193–226.

    Article  MathSciNet  MATH  Google Scholar 

  16. N. Fenichel, Asymptotic stability with rate conditions, Indiana Univ. Math. Journal, 23 (1974) 1109–1137.

    Article  MathSciNet  MATH  Google Scholar 

  17. N. Fenichel, Asymptotic stability with rate conditions II, Indiana Univ. Math. Journal, 26 (1977) 81–93.

    Article  MathSciNet  MATH  Google Scholar 

  18. N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Diff. Eq. 31 (1979) 53–98.

    Article  MathSciNet  MATH  Google Scholar 

  19. R. Gardner & C. Jones, Traveling waves of a perturbed diffusion equation arising in a pahse field model, Indiana U. Math. J. 38 (1989) 1197–1222.

    MATH  Google Scholar 

  20. J. Guckenheimer & P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983.

    Book  MATH  Google Scholar 

  21. J. Hadamard, Sur l'iteration et les solutions asymptotiques des equations differentielles, Bull. Soc. Math. France 29 (1901) 224–228.

    MATH  Google Scholar 

  22. G. Haller & S. Wiggins, Orbits homoclinic to resonances: the Hamiltonian case, Physica D 66 (1993) 298–346.

    Article  MathSciNet  MATH  Google Scholar 

  23. G. Haller & S. Wiggins, N-pulse homoclinic orbits in perturbations of resonant Hamiltonian systems, to appear in Arch. Rat. Mech. Anal. (1995).

    Google Scholar 

  24. S. Hastings, On travelling wave solutions of the Hodgkin-Huxley equations, Arch. Rat. Mech. Anal. 60 (1976) 229–257.

    Article  MathSciNet  MATH  Google Scholar 

  25. M. Hirsch, C. Pugh & M. Shub, Invariant Manifolds, Lecture Notes in Mathematics, 583 (1977), Springer-Verlag, New York.

    MATH  Google Scholar 

  26. C. Jones, Stability of the travelling pulse of the FitzHugh-Nagumo system, Trans. AMS 286 (1984) 431–469.

    Article  MATH  Google Scholar 

  27. C. Jones, T. Kaper & N. Kopell, Tracking invaraint manifolds up to exponentially small erros, SIAM J. Math. Anal., to appear.

    Google Scholar 

  28. C. Jones & N. Kopell, Tracking invariant manifolds with differential forms in singularly perturbed systems, J. Diff. Eq., in press.

    Google Scholar 

  29. C. Jones, N. Kopell & R. Langer, Construction of the FitzHugh-Nagumo pulse using differential forms, in Patterns and Dynamics in Reactive Media, H. Swinney, G. Aris, and D. Aronson eds., IMA Volumes in Mathematics and its Applications, 37 (1991), Springer-Verlag, New York.

    Chapter  Google Scholar 

  30. C. Jones & S.-K. Tin, On the dynamics of tangent spaces near a normally hyperbolic manifold, in preparation.

    Google Scholar 

  31. C. Jones, J. Rubin & M. Maxey, Settling and asymptotic motion of aerosol particles in a cellular flow field, preprint (1994).

    Google Scholar 

  32. T.J. Kaper & G. Kovačič, Multi-bump orbits homoclinic to resonance bands, preprint (1993).

    Google Scholar 

  33. T.J. Kaper & S. Wiggins, On the structure of separatrix swept regions in singularly perturbed Hamiltonian systems, J. Diff. and Int. Eq. 5 (1992) 1363–1381.

    MathSciNet  MATH  Google Scholar 

  34. J. Keener, Frequency decoupling of parallel excitable fibers, SIAM J. Appl. Math. 49 (1989) 211–230.

    Article  MATH  Google Scholar 

  35. G. Kovačič & S. Wiggins, Orbits homoclinic to resonance with an application to chaos in a model of the forced damped sine-Gordon equation, Physica D 57 (1992) 185–225.

    Article  MathSciNet  MATH  Google Scholar 

  36. G. Kovačič, Singular perturbation theory for homoclinic orbits in a class of near-integrable dissipative systems, to appear in SIAM J. Math. Anal.

    Google Scholar 

  37. G. Kovačič, Singular perturbation theory for homoclinic orbits in a class of near-integrable Hamiltonian systems, J. Dyn. Diff. Eq. 5 (1993) 559–597.

    Article  MathSciNet  MATH  Google Scholar 

  38. R. Langer, Existence and Uniqueness of Pulse Solutions to the FitzHugh-Nagumo Equations, Ph.D. Thesis, Northeastern University, 1980.

    Google Scholar 

  39. M. Levi, Qualitative Analysis of the periodically forced relaxation oscillations, Vol. 244 in Memoirs AMS, AMS, Providence, RI, 1981.

    MATH  Google Scholar 

  40. E.N. Lorenz, The slow manifold-What is it?, J. Atmos. Sci. 49 (1992) 2449–2451.

    Article  MathSciNet  Google Scholar 

  41. W.S. Massey, Singular Homology Theory, Graduate Texts in Mathematics 70, Springer-Verlag, New York, 1980.

    MATH  Google Scholar 

  42. R. McGehee, The stable manifold theorem via an isolating block, Symposium on ODE, W. Harris & Y. Sibuya eds., Springer-Verlag, New York (1973) 135–44.

    Google Scholar 

  43. D.W. McLaughlin, E.A. Overman H, S. Wiggins & C. Xiong, Homoclinic orbits in a four dimensional model of a perturbed NLS equation: a geometric singular perturbation study, to appear in Dynamics Reported.

    Google Scholar 

  44. E.F. Mischenko & N. Rozov, Differential Equations with small parameters and realaxtion oscillations, Plenum Press, New York, 1980.

    Book  Google Scholar 

  45. Y. Nishiura & H. Fujii, Stability of singularly perturbed solutions to a system of reaction-diffusion equations, SIAM J. Math. Anal., 18 (1987) 1726–1770.

    Article  MathSciNet  MATH  Google Scholar 

  46. Y. Nishiura & M. Mimura, Layer oscillations in reaction-diffusion systems, SIAM J. Appl. Math. 49 (1989) 481–514.

    Article  MathSciNet  MATH  Google Scholar 

  47. T. Ogawa, Travelling wave solutions to perturbed Korteweg-de Vries equations, preprint (1993), to appear in Hiroshima J. Math.

    Google Scholar 

  48. O. Perron, DieStabilitätsfrage bei Differentialgleichungsysteme, Math. Zeit. 32 (1930) 703–728.

    Article  MathSciNet  Google Scholar 

  49. D. Ruelle, Elements of Diffrentiable Dynamics and Bifurcation Theory, Academic Press, San Diego, 1989.

    MATH  Google Scholar 

  50. Yu. Rzhanov, H. Richardson, A. Hagberg & J. Moloney, Spatio-temporal oscillations in a semiconductor etalon, preprint (1992).

    Google Scholar 

  51. K. Sakamoto, Invariant manifolds in singular perturbation problems for ordinary differential equations, Proc. Roy. Soc. Ed., 116A (1990) 45–78.

    Article  MathSciNet  MATH  Google Scholar 

  52. H. Stommel, Trajectories of small bodies sinking slowly through convection cells, J. Mar. Res., 8 (1949) 24–29.

    Google Scholar 

  53. P. Szmolyan, Analysis of a singularly perturbed travelling wave problem, SIAM J. Appl. Math. (1992)

    Google Scholar 

  54. S.-K. Tin, On the dynamics of tangent spaces near a normally hyperbolic manifold, Ph.D. Thesis, Brown University, 1994.

    Google Scholar 

  55. S.-K. Tin, Transversality of double-pulse homoclinic orbits in some atmospheric equations, preprint (1994).

    Google Scholar 

  56. J. Topper & T. Kawahara, Approximate equations for long nonlinear waves on a viscous fluid, J. Phys. Soc. Japan 44 (1978) 663–666.

    Article  MathSciNet  MATH  Google Scholar 

  57. S. Wiggins, Global Bifurcations and Chaos, Springer-Verlag, New York, 1988.

    Book  MATH  Google Scholar 

  58. S. Wiggins, Normally Hyperbolic Invariant Manifolds in Dynamical Systems, Springer-Verlag, New York, 1994.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Russell Johnson

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag

About this chapter

Cite this chapter

Jones, C.K.R.T. (1995). Geometric singular perturbation theory. In: Johnson, R. (eds) Dynamical Systems. Lecture Notes in Mathematics, vol 1609. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0095239

Download citation

  • DOI: https://doi.org/10.1007/BFb0095239

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60047-3

  • Online ISBN: 978-3-540-49415-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics