Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Bibliography
J. Alexander, R. Gardner & C. Jones, A topological invariant arising in the stability analysis of travelling waves, J. reine angew. Math. 410 (1990) 167–212.
D. Aronson & H. Weinberger, Nonlinear diffusion in population genetics, combustion and nerve propagation, in Partial Differential Equations and Related Topics, J. Goldstein ed., Lecture Notes in Mathematics, 446 (1975), Springer-Verlag, New York.
P. Bates & C. Jones, Invariant manifolds for semilinear partial differential equations, Dynamics Reported vol. 2, Wiley (1989), 1–38.
A.R. Bishop, M.G. Forest, D.W. McLaughlin and E.A. Overman II, Correlations between chaos in a perturbed Sine-Gordon equation and a truncated model system, SIAM J. Math. Anal. (1990) 1511–1536.
A. Bose, Existence and stability of travelling waves for coupled nerve axon equations, Ph.D. thesis, Brown U., 1993.
A. Bose & C. Jones, Stability of the in-phase travelling wave solution in a pair of coupled nerve fibers, preprint (1994).
G. Caginalp & P. Fife, Higher order phase field models and detailed anisotropy, Phys. Rev. B, 34 (1986) 4940–4943.
R. Camassa, On the geometry of a slow manifold, preprint (1994)
R. Camassa & S.-K. Tin, The global geometry of the slow manifold in Lorenz-Krishnamurthy model, preprint (1994).
G. Carpenter, A geometric approach to singular perturbation problems with applications to nerve impulse equations, JDE 23 (1977) 335–367.
K.W. Chang & F.A. Howes, Nonlinear Singular Perturbation Phenomena: Theory and Applications, Springer-Verlag, New York, 1984.
B. Deng, The existence of infinitely many traveling front and back waves in the FitzHugh-Nagumo equations, SIAM J. Math. Anal. 6 (1991).
N. Ercolani, D. McLaughlin & H. Roitner, Attractors and transients for a perturbed periodic KdV equation: a nonlinear spectral analysis, J. Nonlin. Sci. in press.
J.W. Evans, Nerve impulse equations I–IV, Indiana Univ. Math. Journal, 21, 22, 24 (1972–5).
N. Fenichel, Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. Journal, 21 (1971) 193–226.
N. Fenichel, Asymptotic stability with rate conditions, Indiana Univ. Math. Journal, 23 (1974) 1109–1137.
N. Fenichel, Asymptotic stability with rate conditions II, Indiana Univ. Math. Journal, 26 (1977) 81–93.
N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Diff. Eq. 31 (1979) 53–98.
R. Gardner & C. Jones, Traveling waves of a perturbed diffusion equation arising in a pahse field model, Indiana U. Math. J. 38 (1989) 1197–1222.
J. Guckenheimer & P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983.
J. Hadamard, Sur l'iteration et les solutions asymptotiques des equations differentielles, Bull. Soc. Math. France 29 (1901) 224–228.
G. Haller & S. Wiggins, Orbits homoclinic to resonances: the Hamiltonian case, Physica D 66 (1993) 298–346.
G. Haller & S. Wiggins, N-pulse homoclinic orbits in perturbations of resonant Hamiltonian systems, to appear in Arch. Rat. Mech. Anal. (1995).
S. Hastings, On travelling wave solutions of the Hodgkin-Huxley equations, Arch. Rat. Mech. Anal. 60 (1976) 229–257.
M. Hirsch, C. Pugh & M. Shub, Invariant Manifolds, Lecture Notes in Mathematics, 583 (1977), Springer-Verlag, New York.
C. Jones, Stability of the travelling pulse of the FitzHugh-Nagumo system, Trans. AMS 286 (1984) 431–469.
C. Jones, T. Kaper & N. Kopell, Tracking invaraint manifolds up to exponentially small erros, SIAM J. Math. Anal., to appear.
C. Jones & N. Kopell, Tracking invariant manifolds with differential forms in singularly perturbed systems, J. Diff. Eq., in press.
C. Jones, N. Kopell & R. Langer, Construction of the FitzHugh-Nagumo pulse using differential forms, in Patterns and Dynamics in Reactive Media, H. Swinney, G. Aris, and D. Aronson eds., IMA Volumes in Mathematics and its Applications, 37 (1991), Springer-Verlag, New York.
C. Jones & S.-K. Tin, On the dynamics of tangent spaces near a normally hyperbolic manifold, in preparation.
C. Jones, J. Rubin & M. Maxey, Settling and asymptotic motion of aerosol particles in a cellular flow field, preprint (1994).
T.J. Kaper & G. Kovačič, Multi-bump orbits homoclinic to resonance bands, preprint (1993).
T.J. Kaper & S. Wiggins, On the structure of separatrix swept regions in singularly perturbed Hamiltonian systems, J. Diff. and Int. Eq. 5 (1992) 1363–1381.
J. Keener, Frequency decoupling of parallel excitable fibers, SIAM J. Appl. Math. 49 (1989) 211–230.
G. Kovačič & S. Wiggins, Orbits homoclinic to resonance with an application to chaos in a model of the forced damped sine-Gordon equation, Physica D 57 (1992) 185–225.
G. Kovačič, Singular perturbation theory for homoclinic orbits in a class of near-integrable dissipative systems, to appear in SIAM J. Math. Anal.
G. Kovačič, Singular perturbation theory for homoclinic orbits in a class of near-integrable Hamiltonian systems, J. Dyn. Diff. Eq. 5 (1993) 559–597.
R. Langer, Existence and Uniqueness of Pulse Solutions to the FitzHugh-Nagumo Equations, Ph.D. Thesis, Northeastern University, 1980.
M. Levi, Qualitative Analysis of the periodically forced relaxation oscillations, Vol. 244 in Memoirs AMS, AMS, Providence, RI, 1981.
E.N. Lorenz, The slow manifold-What is it?, J. Atmos. Sci. 49 (1992) 2449–2451.
W.S. Massey, Singular Homology Theory, Graduate Texts in Mathematics 70, Springer-Verlag, New York, 1980.
R. McGehee, The stable manifold theorem via an isolating block, Symposium on ODE, W. Harris & Y. Sibuya eds., Springer-Verlag, New York (1973) 135–44.
D.W. McLaughlin, E.A. Overman H, S. Wiggins & C. Xiong, Homoclinic orbits in a four dimensional model of a perturbed NLS equation: a geometric singular perturbation study, to appear in Dynamics Reported.
E.F. Mischenko & N. Rozov, Differential Equations with small parameters and realaxtion oscillations, Plenum Press, New York, 1980.
Y. Nishiura & H. Fujii, Stability of singularly perturbed solutions to a system of reaction-diffusion equations, SIAM J. Math. Anal., 18 (1987) 1726–1770.
Y. Nishiura & M. Mimura, Layer oscillations in reaction-diffusion systems, SIAM J. Appl. Math. 49 (1989) 481–514.
T. Ogawa, Travelling wave solutions to perturbed Korteweg-de Vries equations, preprint (1993), to appear in Hiroshima J. Math.
O. Perron, DieStabilitätsfrage bei Differentialgleichungsysteme, Math. Zeit. 32 (1930) 703–728.
D. Ruelle, Elements of Diffrentiable Dynamics and Bifurcation Theory, Academic Press, San Diego, 1989.
Yu. Rzhanov, H. Richardson, A. Hagberg & J. Moloney, Spatio-temporal oscillations in a semiconductor etalon, preprint (1992).
K. Sakamoto, Invariant manifolds in singular perturbation problems for ordinary differential equations, Proc. Roy. Soc. Ed., 116A (1990) 45–78.
H. Stommel, Trajectories of small bodies sinking slowly through convection cells, J. Mar. Res., 8 (1949) 24–29.
P. Szmolyan, Analysis of a singularly perturbed travelling wave problem, SIAM J. Appl. Math. (1992)
S.-K. Tin, On the dynamics of tangent spaces near a normally hyperbolic manifold, Ph.D. Thesis, Brown University, 1994.
S.-K. Tin, Transversality of double-pulse homoclinic orbits in some atmospheric equations, preprint (1994).
J. Topper & T. Kawahara, Approximate equations for long nonlinear waves on a viscous fluid, J. Phys. Soc. Japan 44 (1978) 663–666.
S. Wiggins, Global Bifurcations and Chaos, Springer-Verlag, New York, 1988.
S. Wiggins, Normally Hyperbolic Invariant Manifolds in Dynamical Systems, Springer-Verlag, New York, 1994.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1995 Springer-Verlag
About this chapter
Cite this chapter
Jones, C.K.R.T. (1995). Geometric singular perturbation theory. In: Johnson, R. (eds) Dynamical Systems. Lecture Notes in Mathematics, vol 1609. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0095239
Download citation
DOI: https://doi.org/10.1007/BFb0095239
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-60047-3
Online ISBN: 978-3-540-49415-7
eBook Packages: Springer Book Archive