Abstract
The model of bulk-synchronous parallel (BSP) computation is an emerging paradigm of general-purpose parallel computing. We study the BSP complexity of subcubic algorithms for Boolean matrix multiplication. The communication cost of a standard Strassen-type algorithm is known to be optimal for general matrices. A natural question is whether it remains optimal when the problem is restricted to Boolean matrices. We give a negative answer to this question, by showing how to achieve a lower asymptotic communication cost for Boolean matrix multiplication. The proof uses a deep result from extremal graph theory, known as Szemerédi's Regularity Lemma. Despite its theoretical interest, the algorithm is not practical, because it works only on astronomically large matrices and involves huge constant factors.
Preview
Unable to display preview. Download preview PDF.
References
A. Aggarwal, A. K. Chandra, and M. Snir. Communication complexity of PRAMs. Theoretical Computer Science, 71:3–28, 1990.
A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer Algorithms. Addison-Wesley, 1976.
N. Alon et al. The algorithmic aspects of the regularity lemma. Journal of Algorithms, 16:80–109, 1994.
J. Basch, S. Khanna, and R. Motwani. On diameter verification and Boolean matrix multiplication. Technical Report STAN-CS-95-1544, Department of Computer Science, Stanford University, 1995.
B. Bollobás. Extremal Graph Theory. Academic Press, 1978.
Yu. D. Burago and V. A. Zalgaller. Geometric Inequalities. Number 285 in Grundl. der math. Wissenschaften. Springer-Verlag, 1988.
D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. Journal of Symbolic Computation, 9(3):251–280, March 1990.
T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The MIT Electrical Engineering and Computer Science Series. The MIT Press and McGraw-Hill, 1990.
H. Hadwiger. Vorlesungen über Inhalt, Oberfläche und Isoperimetrie. Number 93 in Grundl. der math. Wissenschaften. Springer-Verlag, 1957.
J. E. Hopcroft and L. R. Kerr. On minimizing the number of multiplications necessary for matrix multiplication. SI AM Journal of Applied Mathematics, 20(1):30–36, January 1971.
J. Komlós and M. Simonovits. Szemerédi's Regularity Lemma and its applications in graph theory. Technical Report 96-10, DIMACS, 1996.
L. H. Loomis and H. Whitney. An inequality related to the isoperimetrie inequality. Bull. Amer. Math. Soc, 55:961–962, 1949.
W. F. McColl. General purpose parallel computing. In A. Gibbons and P. Spirakis, editors, Lectures on parallel computation, volume 4 of Cambridge International Series on Parallel Computation, chapter 13, pages 337–391. Cambridge University Press, 1993.
W. F. McColl. Scalable computing. In J. van Leeuwen, editor, Computer Science Today: Recent Trends and Developments, volume 1000 of Lecture Notes in Computer Science, pages 46–61. Springer-Verlag, 1995.
W. F. McColl. A BSP realisation of Strassen's algorithm. In M. Kara, J. R. Davy, D. Goodeve, and J. Nash, editors, Abstract Machine Models for Parallel and Distributed Computing. IOS Press, 1996.
W. F. McColl. Universal computing. In L. Bougé, P. Fraigniaud, A. Mignotte, and Y. Robert, editors, Proceedings of Euro-Par'96-I, volume 1123 of Lecture Notes in Computer Science, pages 25–36. Springer-Verlag, 1996.
M. S. Paterson. Complexity of product and closure algorithms for matrices. In Proceedings of the International Congress of Mathematicians, pages 483–489, 1974.
M. S. Paterson. Private communication, 1993.
L. G. Valiant. A bridging model for parallel computation. Communications of the ACM, 33(8):103–111, August 1990.
L. G. Valiant. General purpose parallel architectures. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, chapter 18, pages 943–971. Elsevier, 1990.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1998 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Tiskin, A. (1998). Bulk-synchronous parallel multiplication of boolean matrices. In: Larsen, K.G., Skyum, S., Winskel, G. (eds) Automata, Languages and Programming. ICALP 1998. Lecture Notes in Computer Science, vol 1443. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0055078
Download citation
DOI: https://doi.org/10.1007/BFb0055078
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-64781-2
Online ISBN: 978-3-540-68681-1
eBook Packages: Springer Book Archive