Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Nekhoroshev estimates for quasi-convex hamiltonian systems

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Arnold, V.I. (ed.): Dynamical Systems III. (Encycl. Math. Sci., vol. 3) Berlin Heidelberg New York: Springer 1988

    Google Scholar 

  2. Benettin, G., Galgani, L., Giorgilli, A.: A proof of Nekhoroshev's theorem for the stability times in nearly integrable Hamiltonian systems. Celestial Mech.37, 1–25 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  3. Benettin, G., Galgani, L., Giorgilli, A.: Realization of holonomic constraints and freezing of high frequency degrees of freedom in the light of classical perturbation theory, part II: Commun. Math. Phys.121, 557–601 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  4. Benettin, G., Gallavotti, G.: Stability of motions near resonances in quasi-integrable Hamiltonian systems. J. Stat. Phys.44, 293–338 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  5. Delshams, A., Gutiérrez, P.: Effective stability for nearly integrable Hamiltonian systems. Barcelona (Preprint 1991)

  6. Fassò, F.: Lie series method for vector fields and Hamiltonian perturbation theory. J. Appl. Math. Phys.41, 843–864 (1990)

    Article  MATH  Google Scholar 

  7. Gallavotti, G.: Quasi-integrable mechanical systems. In: Osterwalder, K., Stora, R. (eds.) Phénomènes critiques, systèmes aléatoires, théories de jauge, part II. Les Houches 1984, pp. 539–624. Amsterdam New York: North-Holland 1986

    Google Scholar 

  8. Giorgilli, A.: New insights on the stability problem from recent results in classical perturbation theory. Università degli studi di Milano, quaderno n. 35 (Preprint 1990)

  9. Giorgilli, A., Galgani, L.: Rigorous estimates for the series expansions of Hamiltonian perturbation theory. Celestial Mech.37, 95–112 (1985)

    Article  MathSciNet  Google Scholar 

  10. Giorgilli, A., Zehnder, E.: Exponential stability for time dependent potentials. ETH Zürich (Preprint 1991)

  11. Il'yashenko, Yu.S.: A steepness test for analytic functions. Usp. Mat. Nauk41, 193–194 (1986); Russ. Math. Surv.41, 229–230 (1986)

    MathSciNet  Google Scholar 

  12. Lochak, P.: Stabilité en temps exponentiels des systèmes Hamiltoniens proches de systèmes intégrables: résonances et orbites fermés. Laboratoire Math. Ec. Norm. Supér. (Preprint 1990)

  13. Lochak, P.: Canonical perturbation theory via simultaneous approximation. Ec. Norm. Supér. (Preprint 1991); Russ. Math. Surv. (to appear)

  14. Lochak, P., Meunier, C.: Multiphase Averaging for Classical Systems. (Appl. Math. Sci., vol. 72) Berlin Heidelberg New York: Springer 1988

    MATH  Google Scholar 

  15. Lochak, P., Neishtadt, A.I.: Estimates of stability time for nearly integrable systems with a quasiconvex Hamiltonian. Chaos (to appear)

  16. Molchanov, A.M.: The resonant structure of the solar system. Icarus8, 203–215 (1968)

    Article  Google Scholar 

  17. Molchanov, A.M.: The reality of resonances in the solar system. Icarus11, 104–110 (1969)

    Article  Google Scholar 

  18. Neishtadt, A.I.: The separation of motions in systems with rapidly rotating phase. J. Appl. Math. Mech.48(2), 133–139 (1984); Prikl. Mat. Mekh.48(2), 197–204 (1984)

    Article  MathSciNet  Google Scholar 

  19. Nekhoroshev, N.N.: Behaviour of Hamiltonian systems close to integrable. Funct. Anal. Appl.5, 338–339 (1971)

    Article  MATH  Google Scholar 

  20. Nekhoroshev, N.N.: An exponential estimate of the time of stability of nearly-integrable Hamiltonian systems, I. Usp. Mat. Nauk32, 5–66, (1977); Russ. Math. Surv.32, 1–65 (1977)

    MATH  Google Scholar 

  21. Nekhoroshev, N.N.: An exponential estimate of the time of stability of nearly-integrable Hamiltonian systems, II. Tr. Semin. Petrovsk.5, 5–50 (1979); In: Oleinik, O.A. (ed.) Topics in Modern Mathematics, Petrovskii Semin, no. 5. New York: Consultant Bureau 1985

    MATH  MathSciNet  Google Scholar 

  22. Pöschel, J.: Integrability of Hamiltonian systems on Cantor sets. Commun. Pure Appl. Math.35, 653–695 (1982)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pöschel, J. Nekhoroshev estimates for quasi-convex hamiltonian systems. Math. Z. 213, 187–216 (1993). https://doi.org/10.1007/BF03025718

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03025718

Keywords

Navigation