References
Arnold, V.I. (ed.): Dynamical Systems III. (Encycl. Math. Sci., vol. 3) Berlin Heidelberg New York: Springer 1988
Benettin, G., Galgani, L., Giorgilli, A.: A proof of Nekhoroshev's theorem for the stability times in nearly integrable Hamiltonian systems. Celestial Mech.37, 1–25 (1985)
Benettin, G., Galgani, L., Giorgilli, A.: Realization of holonomic constraints and freezing of high frequency degrees of freedom in the light of classical perturbation theory, part II: Commun. Math. Phys.121, 557–601 (1989)
Benettin, G., Gallavotti, G.: Stability of motions near resonances in quasi-integrable Hamiltonian systems. J. Stat. Phys.44, 293–338 (1986)
Delshams, A., Gutiérrez, P.: Effective stability for nearly integrable Hamiltonian systems. Barcelona (Preprint 1991)
Fassò, F.: Lie series method for vector fields and Hamiltonian perturbation theory. J. Appl. Math. Phys.41, 843–864 (1990)
Gallavotti, G.: Quasi-integrable mechanical systems. In: Osterwalder, K., Stora, R. (eds.) Phénomènes critiques, systèmes aléatoires, théories de jauge, part II. Les Houches 1984, pp. 539–624. Amsterdam New York: North-Holland 1986
Giorgilli, A.: New insights on the stability problem from recent results in classical perturbation theory. Università degli studi di Milano, quaderno n. 35 (Preprint 1990)
Giorgilli, A., Galgani, L.: Rigorous estimates for the series expansions of Hamiltonian perturbation theory. Celestial Mech.37, 95–112 (1985)
Giorgilli, A., Zehnder, E.: Exponential stability for time dependent potentials. ETH Zürich (Preprint 1991)
Il'yashenko, Yu.S.: A steepness test for analytic functions. Usp. Mat. Nauk41, 193–194 (1986); Russ. Math. Surv.41, 229–230 (1986)
Lochak, P.: Stabilité en temps exponentiels des systèmes Hamiltoniens proches de systèmes intégrables: résonances et orbites fermés. Laboratoire Math. Ec. Norm. Supér. (Preprint 1990)
Lochak, P.: Canonical perturbation theory via simultaneous approximation. Ec. Norm. Supér. (Preprint 1991); Russ. Math. Surv. (to appear)
Lochak, P., Meunier, C.: Multiphase Averaging for Classical Systems. (Appl. Math. Sci., vol. 72) Berlin Heidelberg New York: Springer 1988
Lochak, P., Neishtadt, A.I.: Estimates of stability time for nearly integrable systems with a quasiconvex Hamiltonian. Chaos (to appear)
Molchanov, A.M.: The resonant structure of the solar system. Icarus8, 203–215 (1968)
Molchanov, A.M.: The reality of resonances in the solar system. Icarus11, 104–110 (1969)
Neishtadt, A.I.: The separation of motions in systems with rapidly rotating phase. J. Appl. Math. Mech.48(2), 133–139 (1984); Prikl. Mat. Mekh.48(2), 197–204 (1984)
Nekhoroshev, N.N.: Behaviour of Hamiltonian systems close to integrable. Funct. Anal. Appl.5, 338–339 (1971)
Nekhoroshev, N.N.: An exponential estimate of the time of stability of nearly-integrable Hamiltonian systems, I. Usp. Mat. Nauk32, 5–66, (1977); Russ. Math. Surv.32, 1–65 (1977)
Nekhoroshev, N.N.: An exponential estimate of the time of stability of nearly-integrable Hamiltonian systems, II. Tr. Semin. Petrovsk.5, 5–50 (1979); In: Oleinik, O.A. (ed.) Topics in Modern Mathematics, Petrovskii Semin, no. 5. New York: Consultant Bureau 1985
Pöschel, J.: Integrability of Hamiltonian systems on Cantor sets. Commun. Pure Appl. Math.35, 653–695 (1982)
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Pöschel, J. Nekhoroshev estimates for quasi-convex hamiltonian systems. Math. Z. 213, 187–216 (1993). https://doi.org/10.1007/BF03025718
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF03025718