Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Archimedean lattices

  • Published:
algebra universalis Aims and scope Submit manuscript

Abstract

Anarchimedean lattice is a complete algebraic latticeL with the property that for each compact elementcL, the meet of all the maximal elements in the interval [0,c] is 0.L ishyper-archimedean if it is archimedean and for eachxL, [x, 1] is archimedean. The structure of these lattices is analysed from the point of view of their meet-irreducible elements. If the lattices are also Brouwer, then the existence of complements for the compact elements characterizes a particular class of hyper-archimedean lattices.

The lattice ofl-ideals of an archimedean lattice ordered group is archimedean, and that of a hyper-archimedean lattice ordered group is hyper-archimedean. In the hyper-archimedean case those arising as lattices ofl-ideals are fully characterized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Bigard,Groupes archimédiens et hyper-archimédiens, No. 2 (1967–68).

  2. G. Birkhoff,Lattice theory, Amer. Math. Soc. Coll. Publ.,XXV (1967).

  3. G. Birkhoff and O. Frink,Representations of lattices by sets, Trans. Amer. Math. Soc.64 (1948), 299–316.

    Article  MATH  MathSciNet  Google Scholar 

  4. R. Bleier and P. Conrad,The lattice of closed ideals and a *-extensions of an abelian l-group, preprint.

  5. P. M. Cohn,Universal algebra, Harper and Row (1965).

  6. P. Conrad,Lattice oddered groups, Tulane University (1970).

  7. P. Conrad,Epi-archimedean lattice ordered groups, preprint.

  8. O. Frink,Pseudo-complements in semi-lattices, Duke Math. Jour.29 (1962), 505–514.

    Article  MATH  MathSciNet  Google Scholar 

  9. G. Grätzer,Universal algebra, Van Nostrand (1968).

  10. G. Grätzer and E. T. Schmidt,Characterizations of congruence lattices of abstract algebras, Acta Sci. Math.24 (1963), 34–59.

    MATH  Google Scholar 

  11. J. P. Jans,Rings and homology, Holt, Rinehart and Winston (1964).

  12. L. Nachbin,On a characterization of the lattice of all ideals of a Boolean ring, Fund. Math.36 (1949), 137–142.

    MATH  MathSciNet  Google Scholar 

  13. J. Varlet,Contribution à l’étude des treillis pseudo-complementés et des treillis de Stone, Mém. Soc. Roy. Sci. Liège8, (1963), 1–71.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinez, J. Archimedean lattices. Algebra Univ. 3, 247–260 (1973). https://doi.org/10.1007/BF02945124

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02945124

Keywords

Navigation