Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Ear-decompositions of matching-covered graphs

  • Published:
Combinatorica Aims and scope Submit manuscript

Abstract

We call a graphmatching-covered if every line belongs to a perfect matching. We study the technique of “ear-decompositions” of such graphs. We prove that a non-bipartite matching-covered graph containsK 4 orK 2K 3 (the triangular prism). Using this result, we give new characterizations of those graphs whose matching and covering numbers are equal. We apply these results to the theory of τ-critical graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Andrásfai, On critical graphs, in:Theory of Graphs, Dunod, Paris—Gordon and Breach, New York, (1967) 9–19.

    Google Scholar 

  2. C. Berge, Regularizable graphs I–II,Discrete Math. 23 (1978) 85–89 and 91–95.

    Article  MATH  MathSciNet  Google Scholar 

  3. R. W. Deming, Independence numbers of graphs — an extension of the König—Egerváry theorem,Discrete Math. 27 (1979) 23–33.

    Article  MATH  MathSciNet  Google Scholar 

  4. J. Edmonds, Paths, trees and flowers,Can. J. Math. 17 (1965) 449–467.

    MATH  MathSciNet  Google Scholar 

  5. P. Erdős andT. Gallai, On the minimal number of vertices representing the edges of a graph,Publ. Math. Inst. Hung. Acad. Sci. 4 (1961) 181–205.

    Google Scholar 

  6. T. Gallai, Maximale Systeme unabhängiger Kanten,Publ. Math. Inst. Hung. Acad. Sci. 9 (1965) 401–413.

    MathSciNet  Google Scholar 

  7. A. Hajnal, Onk-saturated graphs,Can. J. Math. 17 (1965) 720–724.

    MATH  MathSciNet  Google Scholar 

  8. D. J. Hartfield, A simplified form for nearly reducible and nearly decomposable matrices,Proc. Amer. Math. Soc. 24 (1970) 388–393.

    Article  MathSciNet  Google Scholar 

  9. G. Hetyei, 2×1-es téglalapokkal lefedhető idomokról,Pécsi Tanárképző Főiskola Tud. Kőzl. (1964) 351–368.

  10. A. Kotzig, Ein Beitrag zur Theorie der endlichen Graphen I–II–III,Mat. Fyz. Casopis 9 (1959) 73–91, 136–159, and10 (1960) 205–215.

    MATH  Google Scholar 

  11. D. König, Vonalrendszerek és determinánsok,Mat. Term. Ért. 33 (1915) 221–229.

    Google Scholar 

  12. G. H. C. Little, A theorem on connected praphs in which every edge belongs to a 1-factor,J. Austral. Math. Soc. 18 (1974) 450–452.

    Article  MATH  MathSciNet  Google Scholar 

  13. L. Lovász, On the structure of factorizable graphs,Acta Math. Acad. Sci. Hung. 23 (1972) 179–195.

    Article  MATH  Google Scholar 

  14. L. Lovász, Some finite basis theorems an graph theory, in:Combinatorics (ed. A. Hajnal and V. T. Sós), Nort-Holland, 1978, 717–729.

  15. L. Lovász andM. D. Plummer, On bicritical graphs, in:Infinite and Finite sets, (ed. A. Hajnal, R. Rado and V. T. Sós) North-Holland, 1975, 1051–1979.

  16. L. Lovász andM. D. Plummer, On minimal elementary bipartite graphs,J. Comb. Theory B 23 (1977) 127–138.

    Article  MATH  Google Scholar 

  17. D. Naddef, Rank of maximum matchings in a graph,Math. Programming (1981).

  18. D. Naddef, andW. R. Pulleyblank, Ear decomposition of elementary graphs andGF 2-rank of perfect matchings,preprint (1981).

  19. M. D. Plummer, Onn-extendable graphs,Discrete Math. 31 (1980) 201–210.

    Article  MATH  MathSciNet  Google Scholar 

  20. F. Sterboul, A characterization of the graphs in which the transversal number equals the matching number,preprint.

  21. L. Surányi, On line-critical graphs, in:Infinite and Finite Sets (ed. A. Hajnal, R. Rado and V. T. Sós), North-Holland (1975) 1411–1444.

  22. W. T. Tutte, The 1-factors of oriented graphs,Proc. Amer. Math. Soc. 4 (1953) 922–931.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Tibor Gallai on his seventieth birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lovász, L. Ear-decompositions of matching-covered graphs. Combinatorica 3, 105–117 (1983). https://doi.org/10.1007/BF02579346

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02579346

AMS subject classification (1980)

Navigation