Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A note on the derivation of maximal common subgraphs of two directed or undirected graphs

  • Published:
CALCOLO Aims and scope Submit manuscript

Abstract

In this note the problem is considered of finding maximal common subgraphs of two given graphs. A technique is described by which this problem can be stated as a problem of deriving maximal compatibility classes. A known «maximal compatibility classes» algorithm can then be used to derive maximal common subgraphs.

The same technique is shown to apply to the classical subgraph isomorphism problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Unger, S. H.,GIT, a heuristic program for testing pairs of directed line graphs for isomorphism, Comm. ACM7 (1964), 26–34.

    Article  MATH  Google Scholar 

  2. Sussenguth, E. H. Jr.,A graph-theoretical algorithm for matching chemical structures, J. Chem. Doc.5 (1965), 36–43.

    Article  Google Scholar 

  3. Salton, G. andSussenguth, E. H. Jr.,Some flexible information retrieval systems using structure matching procedures, Proc. AFIPS 1964 SJCC25 (1964), Spartan Books, New York, 587–598.

    Google Scholar 

  4. Corneil, D. G. andGotlieb, C.C.,An efficient algorithm for graph isomorphism, J. ACM17 (1970), 51–64.

    Article  MATH  MathSciNet  Google Scholar 

  5. Morpurgo, R.,Un metodo euristico per la verifica dell’isomorfismo di due grafi non orientati, Calcolo8 (1971), 1–31.

    MATH  MathSciNet  Google Scholar 

  6. Sirovich, F.,Isomorfismo fra grafi: un algoritmo efficiente per trovare tutti gli isomorfismi, Calcolo8 (1971), 301–337.

    MathSciNet  Google Scholar 

  7. Levi, G. andLuccio, F.,A technique for graph embedding with constraints on node and arc correspondences, Information Sciences5 (1973), 1–23.

    Article  MathSciNet  Google Scholar 

  8. Levi, G. andLuccio, F.,A weighted graph embedding technique and its application to automatic circuit layout, Calcolo8 (1971), 49–60.

    MATH  Google Scholar 

  9. Paull, M. C. andUnger, S. H.,Minimizing the number of states in incompletely specified sequential switching functions, IRE Trans. on Electronic Computers8 (1959), 356–367.

    Article  Google Scholar 

  10. Grasselli, A.,A note on the derivation of maximal compatibility classes, Calcolo3 (1966), 165–176.

    Article  MATH  MathSciNet  Google Scholar 

  11. Wolfberg, M. S.,Determination of maximally complete subgraphs, Moore School of E E., Rept. n. 65-27, Univ. of Pennsylvania, Philadelphia, Penn. (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levi, G. A note on the derivation of maximal common subgraphs of two directed or undirected graphs. Calcolo 9, 341–352 (1973). https://doi.org/10.1007/BF02575586

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02575586

Keywords

Navigation