Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Bootstrap choice of tuning parameters

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

Consider the problem of estimating θ=θ(P) based on datax n from an unknown distributionP. Given a family of estimatorsT n, β of θ(P), the goal is to choose β among β∈I so that the resulting estimator is as good as possible. Typically, β can be regarded as a tuning or smoothing parameter, and proper choice of β is essential for good performance ofT n, β . In this paper, we discuss the theory of β being chosen by the bootstrap. Specifically, the bootstrap estimate of β,\(\hat \beta _n\), is chosen to minimize an empirical bootstrap estimate of risk. A general theory is presented to establish the consistency and weak convergence properties of these estimators. Confidence intervals for θ(P) based on\(T_{n,\hat \beta _n }\), are also asymptotically valid. Several applications of the theory are presented, including optimal choice of trimming proportion, bandwidth selection in density estimation and optimal combinations of estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beran, R. (1984). Bootstrap methods in statistics,Jber. d. Dt. Math.-Verein,36, 847–856.

    Google Scholar 

  • Beran, R. (1986). Simulated power functions,Ann. Statist.,14, 151–173.

    MATH  MathSciNet  Google Scholar 

  • Beran, R. and Millar, W. (1987). Stochastic estimation and testing,Ann. Statist.,15, 1131–1154.

    MATH  MathSciNet  Google Scholar 

  • Bickel, P. J. and Freedman, D. A. (1981). Some asymptotic theory for the bootstrap,Ann. Statist.,9, 1196–1217.

    MATH  MathSciNet  Google Scholar 

  • Bickel, P. and Rosenblatt, M. (1973). On some global measures of the deviations of density function estimates,Ann. Statist.,1, 1071–1095.

    MATH  MathSciNet  Google Scholar 

  • Billingsley, P. (1968).Convergence of Probability Measures, Wiley, New York.

    MATH  Google Scholar 

  • Bowman, A., Hall, P. and Titterington, D. (1984). Cross-validation in nonparametric estimation of probabilities and probability densities,Biometrika,71, 341–351.

    Article  MATH  MathSciNet  Google Scholar 

  • Cox, D. and Hinkley, D. (1974).Theoretical Statistics, Chapman and Hall, London.

    MATH  Google Scholar 

  • Efron, B. (1979). Bootstrap methods: Another look at the jackknife,Ann. Statist.,7, 1–26.

    MATH  MathSciNet  Google Scholar 

  • Faraway, J. and Jhun, M. (1988). Bootstrap choice of bandwidth for density estimation, Tech. Report No. 157, Department of Statistics, University of Michigan.

  • Ghosh, M., Parr, W., Singh, K. and Babu, G. (1984). A note on bootstrapping the sample median,Ann. Statist.,12, 1130–1135.

    MATH  MathSciNet  Google Scholar 

  • Hall, P. and Martin, M. (1988). On bootstrap resampling and iteration,Biometrika,75, 661–671.

    Article  MATH  MathSciNet  Google Scholar 

  • Hall, P., DiCiccio, T. and Romano, J. (1989). On smoothing and the bootstrap,Ann. Statist.,17, 692–704.

    MATH  MathSciNet  Google Scholar 

  • Jaeckel, L. (1971). Some flexible estimates of location,Ann. Math. Statist.,43, 1041–1067.

    Google Scholar 

  • Johnstone, I. and Velleman, P. (1985). Efficient scores, variance decompositions, and Monte Carlo swindles,J. Amer. Statist. Assoc.,80, 851–862.

    Article  MathSciNet  Google Scholar 

  • Léger, C. (1988). Use of the bootstrap in an adaptive statistical procedure, Tech. Report No. 296, Department of Statistics, Stanford University.

  • Lehmann, E. (1983).Theory of Point Estimation, Wiley, New York.

    Google Scholar 

  • Parzen, E. (1962). On estimation of a probability density and mode,Ann. Statist.,33, 1065–1076.

    MATH  MathSciNet  Google Scholar 

  • Pollard, D. (1984).Convergence of Stochastic Processes, Springer, New York.

    MATH  Google Scholar 

  • Pruitt, R. (1988). Cross-validation in the one sample location problem, Tech. Report No. 510, School of Statistics, University of Minnesota.

  • Romano, J. (1988a). On weak convergence and optimality of kernel density estimates of the mode,Ann. Statist.,16, 629–647.

    MATH  MathSciNet  Google Scholar 

  • Romano, J. (1988b). Bootstrapping the mode,Ann. Inst. Statist. Math.,40, 565–586.

    Article  MATH  MathSciNet  Google Scholar 

  • Serfling, R. (1980).Approximation Theorems of Mathematical Statistics, Wiley, New York.

    MATH  Google Scholar 

  • Sheehy, A. and Wellner, J. (1988). Uniformity inP of some limit theorems for empirical measures and processes, Tech. Report 134, Revision 2, Department of Statistics, University of Washington.

  • Silverman, B. (1978). Weak and strong uniform consistency of the kernel estimate of a density and its derivatives,Ann. Statist.,6, 177–184.

    MATH  MathSciNet  Google Scholar 

  • Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions,J. Roy. Statist. Soc. Ser. B,36, 111–147.

    MATH  MathSciNet  Google Scholar 

  • Stone, M. (1977). Asymptotics for and against cross-validation,Biometrika,64, 29–35.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Léger, C., Romano, J.P. Bootstrap choice of tuning parameters. Ann Inst Stat Math 42, 709–735 (1990). https://doi.org/10.1007/BF02481146

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02481146

Key words and phrases

Navigation