Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Measuring orientation of human body segments using miniature gyroscopes and accelerometers

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

In the medical field, there is a need for small ambulatory sensor systems for measuring the kinematics of body segments. Current methods for ambulatory measurement of body orientation have limited accuracy when the body moves. The aim of the paper was to develop and validate a method for accurate measurement of the orientation of human body segments using an inertial measurement unit (IMU). An IMU containing three single-axis accelerometers and three single-axis micromachined gyroscopes was assembled in a rectangular box, sized 20×20×30 mm. The presented orientation estimation algorithm continuously corrected orientation estimates obtained by mathematical integration of the 3D angular velocity measured using the gyroscopes. The correction was performed using an inclination estimate continuously obtained using the signal of the 3D accelerometer. This reduces the integration drift that originates from errors in the angular velocity signal. In addition, the gyroscope offset was continuously recalibrated. The method was realised using a Kalman filter that took into account the spectra of the signals involved as well as a fluctuating gyroscope offset. The method was tested for movements of the pelvis, trunk and forearm. Although the problem of integration drift around the global vertical continuously increased in the order of 0.5°s −1, the inclination estimate was accurate within 3° RMS. It was shown that the gyroscope offset could be estimated continuously during a trial. Using an initial offset error of 1 rads −1, after 2 min the offset error was roughly 5% of the original offset error. Using the Kalman filter described, an accurate and robust system for ambulatory motion recording can be realised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alusi, S. H., Worthington, J., Glickman, S., andBain, P. G. (2001): ‘A study of tremor in multiple sclerosis’,Brain: J. Neurol.,124, pp. 720–730

    Google Scholar 

  • Bachman, E. R. (2000): ‘Inertial and magnetic tracking of limb segment orientation for inserting humans in synthetic environments’. Naval postgraduate school, Monterey, USA.

    Google Scholar 

  • Barshan, B., and DURRANT-WHYTE, H. F. (1995): ‘Inertial navigation systems for mobile robots’,IEEE Trans. Robot. Automat.,11, pp. 328–342

    Article  Google Scholar 

  • Baselli, G., Legnani, G., Franco, P., Brognoli, F., Marras, A., Quaranta, F., andZappa, B. (2001): ‘Assessment of inertial and gravitational inputs to the vestibular system’,J. Biomech.,34, pp. 821–826

    Article  Google Scholar 

  • Baten, C. T. M., Oosterhoff, P., Kingma, I., Veltink, P. H., andHermens, H. J. (1996): ‘Inertial sensing in ambulatory load estimation’.Proc. IEEE Eng. in Med. & Biol Soc., 18th Ann. Int. Conf., Amsterdam

  • Bernmark, E., andWiktorin, C. (2002): ‘A triaxial accelerometer for measuring arm movements’,Appl. Ergon.,33, pp. 541–547

    Article  Google Scholar 

  • Bortz, J. E. (1971): ‘A new mathematical formulation for strapdown inertial navigation’,IEEE Trans. Aerosp. Electron. Syst.,7, pp. 61–66

    Google Scholar 

  • Bouten, C. V. C., Koekkoek, K. T. M., Verduin, M., Kodde, R., andJanssen, J. D. (1997): ‘A triaxial accelerometer and portable processing unit for the assessment of daily physical activity’,IEEE Trans. Biomed. Eng.,44, pp. 136–147

    Article  Google Scholar 

  • Brown, R. G., andHwang, P. Y. C. (1997): ‘Introduction to random signals and applied Kalman filtering’, (John Wiley and Sons, 1997)

  • Dingweli, J. B., Cusumano, J. P., Sternad, D., andCavanagh, P. R. (2000): ‘Slower speeds in patients with diabetic neuropathy lead to improved local dynamic stability of continuous overground walking’,J. Biomech.,33, pp. 1269–1277

    Google Scholar 

  • Ferraris, F., Grimaldi, U., andParvis, M. (1995): ‘Procedure for effortless in-field calibration of three-axis rate gyros and accelerometers’,Sensors Mater.,7, pp. 311–330

    Google Scholar 

  • Foerster, F., Smeja, M., andFahrenberg, J. U. (1999): ‘Detection of posture and motion by accelerometry: a validation study in ambulatory monitoring’,Comput. Human Behav.,15, pp. 571–583

    Google Scholar 

  • Foxlin, E. (1996): ‘Inertial head-tracker sensor fusion by a complementary separate-bias Kalman filter’,Proc. VRAIS

  • Hansson, G. A., Asterland, P., Holmer, N. G., andSkerfving, S. (2001): ‘Validity and reliability of triaxial accelerometers for inclinometry in posture analysis’,Med. Biol. Eng. Comput.,39, pp. 405–413

    Article  Google Scholar 

  • Ignagni, M. B. (1990): ‘Optimal strapdown attitude integration algorithms’,J. Guidance,12, pp. 363–369

    Google Scholar 

  • Jlang, Y. F., andLin, Y. P. (1992): ‘Improved strapdown coning algorithms’,IEEE Trans. Aerosp. Elec. Syst.,28, pp. 484–489

    Google Scholar 

  • Kalman, R. E. (1960): ‘A new approach to linear filtering and prediction problems’,J. Basic Eng., pp. 35–45

  • Kemp, B., Janssen, A. J. M. W., andVan Der Kamp, B. (1998): ‘Body position can be monitored in 3D using minature accelerometers and earth-magnetic field sensors’,Electroenceph. Clin. Neurophysiol./Electromyogr. Motor Control,109, pp. 484–488

    Google Scholar 

  • Lötters, J., Bomer, J., Verloop, T., Droog, E., Olthuis, W., Veltink, P. H., andBergveld, P. (1998): ‘In-use calibration procedure for a triaxial accelerometer’,Sensors Actuators A, Phys.,66, pp. 205–212

    Google Scholar 

  • Luinge, H. J., andVeltink, P. H. (2004): ‘Inclination measurement of human movement using a 3D accelerometer with autocalibration’,IEEE Trans. Neural Syst. Rehabil. Eng.,12, pp. 112–121

    Article  Google Scholar 

  • Manson, A. J., Brown, P., O'sullivan, J. D., Asselman, P., Buckwell, D., andLees, A. J. (2000): ‘An ambulatory dyskinesia monitor’,J. Neurol. Neurosurg. Psychiatry,68, pp. 196–201

    Article  Google Scholar 

  • Mathie, M. J., Coster, A. C., Lovell, N. H., andCeller, B. G. (2003): ‘Detection of daily physical activities using a triaxial accelerometer’,Med. Biol. Eng. Comput.,41, pp. 296–301

    Google Scholar 

  • Mayagoitia, R. E., Nene, A. V., andVeltink, P. H. (2002): ‘Accelerometer and rate gyroscope measurement of kinematics: an inexpensive alternative to optical motion analysis systems’,J. Biomech.,35, pp. 537–542

    Article  Google Scholar 

  • Miyazaki, S. (1997): ‘Long-term unrestrained measurement of stride length and walking velocity utilizing a piezoelectric gyroscope’,IEEE Trans. Biomed. Eng.,44, pp. 753–759

    Article  Google Scholar 

  • Moe-Nilssen, R. (1998): ‘A new method for evaluating motor control in gait under real-life environmental conditions. Part 1: The instrument’,Clin. Biomech.,13, pp. 328–335

    Google Scholar 

  • Moe-Nilssen, R., andHelbostad, J. L. (2004): ‘Trunk accelerometry as a measure of balance control during quiet standing’,J. Biomech.,37, pp, 121–126

    Google Scholar 

  • Najafi, B., Aminian, K., Loew, F., Blanc, Y., andRobert, P. A. (2002): ‘Measurement of stand-sit and sit-stand transitions using a miniature gyroscope and its application in fall risk evaluation in the elderly’,IEEE Trans. Biomed. Eng.,49, pp. 843–851

    Article  Google Scholar 

  • Pappas, I. P., Popovic, M. R., Keller, T., Dietz, V., andMorari, M. (2001): ‘A reliable gait phase detection system’,IEEE Trans. Neural Syst. Rehabil. Eng.,9, pp. 113–125

    Article  Google Scholar 

  • Sweeney, P. C., Lyons, G. M., andVeltink, P. H. (2000): ‘Finite state control of functional electrical stimulation for the rehabilitation of gait’,Med. Biol. Eng. Comput.,38, pp. 121–126

    Article  Google Scholar 

  • Tong, K. Y., andGranat, M. H. (1998): ‘Virtual artificial sensor technique for functional electrical stimulation’,Med. Eng. Phys.,20, pp. 458–468

    Article  Google Scholar 

  • Tong, K., andGranat, M. H. (1999): ‘A practical gait analysis system using gyroscpes’,Med. Eng. Phys.,21, pp. 87–94

    Article  Google Scholar 

  • Uswatte, G. (2000): ‘Objective measurement of functional upper-extremity movement using accelerometer recordings transformed with a threshold filter’,Stroke,31, pp. 662–667

    Google Scholar 

  • Van Den Bogert, A. J., Read, L., andNigg, B. M. (1996): ‘A method for inverse dynamic analysis using accelerometry’,J. Biomech.,29, pp. 949–954

    Google Scholar 

  • Veltink, P. H., Slycke, P., Hemssems, J., Buschman, R., Bultstra, G., andHermens, H. (2003): ‘Three dimensional inertial sensing of foot movements for automatic tuning of a two-channel implantable drop-foot stimulator’,Med. Eng. Phys.,25, pp. 21–28

    Article  Google Scholar 

  • Willemsen, A. T., Bloemhof, F., andBoom, H. B. (1990a): ‘Automatic stance-swing phase detection from accelerometer data for peroneal nerve stimulation’,IEEE Trans. Biomed. Eng.,37, pp. 1201–1208

    Article  Google Scholar 

  • Willemsen, A. T., Van Alste, J. A., andBoom, H. B. (1990b): ‘Real-time gait assessment utilizing a new way of accelerometry’,J. Biomech.,23, pp. 859–863

    Article  Google Scholar 

  • Williamson, R., andAndrews, B. J. (2000): ‘Sensor systems for lower limb functional electrical stimulation (FES) control’,Med. Eng. Phys.,22, pp. 313–325

    Article  Google Scholar 

  • Williamson, R., andAndrews, B. J. (2001): ‘Detecting absolute human knee angle and angular velocity using accelerometer and rate gyroscopes’,Med. Biol. Eng. Comput.,39, pp. 294–302

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. H. Veltink.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luinge, H.J., Veltink, P.H. Measuring orientation of human body segments using miniature gyroscopes and accelerometers. Med. Biol. Eng. Comput. 43, 273–282 (2005). https://doi.org/10.1007/BF02345966

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02345966

Keywords

Navigation