Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Nonmetric individual differences multidimensional scaling: An alternating least squares method with optimal scaling features

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

A new procedure is discussed which fits either the weighted or simple Euclidian model to data that may (a) be defined at either the nominal, ordinal, interval or ratio levels of measurement; (b) have missing observations; (c) be symmetric or asymmetric; (d) be conditional or unconditional; (e) be replicated or unreplicated; and (f) be continuous or discrete. Various special cases of the procedure include the most commonly used individual differences multidimensional scaling models, the familiar nonmetric multidimensional scaling model, and several other previously undiscussed variants.

The procedure optimizes the fit of the model directly to the data (not to scalar products determined from the data) by an alternating least squares procedure which is convergent, very quick, and relatively free from local minimum problems.

The procedure is evaluated via both Monte Carlo and empirical data. It is found to be robust in the face of measurement error, capable of recovering the true underlying configuration in the Monte Carlo situation, and capable of obtaining structures equivalent to those obtained by other less general procedures in the empirical situation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference Notes

  • Bloxom, B.Individual differences in multidimensional scaling (Research Bulletin 68-45). Princeton, N. J.: Educational Testing Service, 1968.

    Google Scholar 

  • Carroll, J. D. & Chang, J. J.IDIOSCAL (Individual Differences in Orientation Scaling). Paper presented at the Spring meeting of the Psychometric Society, Princeton, N. J., April, 1972.

  • Carroll, J. D. & Chang, J. J.Some methodological advances in INDSCAL. Paper presented at the Spring meeting of the Psychometric Society, Stanford, California, April, 1974.

  • de Leeuw, J.Canonical discriminant analysis of relational data (Research Bulletin RB004-75). Leiden, The Netherlands: Datatheorie, University of Leiden, 1975.

    Google Scholar 

  • de Leeuw, J.An initial estimate for INDSCAL. Unpublished note, 1974.

  • de Leeuw, J.The positive orthant method for nonmetric multidimensional scaling (Research Note RN 001-70). Leiden, TheN etherlands: Datatheorie, University of Leiden, 1970.

    Google Scholar 

  • de Leeuw, J. & Pruzansky,^S.A new computational method to fit the weighted Euclidean model (SUMSCAL). Unpublished notes, Bell Laboratories, 1975.

  • Gill, P. E. & Murray, W.Two methods for the solution of linearly constrained and unconstrained optimization problems (NPL Report NAC 25). Teddington, England: National Physics Laboratory, November, 1972.

    Google Scholar 

  • Guttman, L.Smallest space analysis by the absolute value principle. Paper presented at the symposium on “Theory and practice of measurement” at the Nineteenth International Congress of Psychology, London, 1969.

  • Harshman, R. A.Foundations of the PARAFAC procedure: Models and conditions for an explanatory multi-modal factor analysis (Working Papers in Phonetics No. 16). Los Angeles: University of California, 1970.

    Google Scholar 

  • Horst, P.The prediction of personal adjustment (Bulletin 48). New York: The Social Science Research Council, 1941.

    Google Scholar 

  • Jacobowitz, D.The acquisition of semantic structures. Unpublished doctoral dissertation, University of North Carolina, 1975.

  • Jones, L. E. & Wadington, J.Sensitivity of INDSCAL to simulated individual differences in dimension usage patterns and judgmental error. Paper delivered at the Spring meeting of the Psychometric Society, Chicago, April, 1973.

  • Kruskal, J. B., Young, F. W., & Seery, J. B.How to use KYST, a very flexible program to do multidimensional scaling and unfolding. Unpublished manuscript, Bell Laboratories, 1973.

  • Obenchain, R.Squared distance scaling as an alternative to principal components analysis. Unpublished notes, Bell Laboratories, 1971.

  • Roskam, E. E.Data theory and algorithms for nonmetric scaling (parts 1 and 2). Unpublished manuscript, Catholic University, Nijmegen, The Netherlands, 1969.

    Google Scholar 

  • Yates, A.Nonmetric individual-differences multidimensional scaling with balanced least squares monotone regression. Paper presented at the Spring meeting of Psychometric Society, Princeton, N. J., April, 1972.

  • Young, F. W.Polynomial conjoint analysis: Some second order partial derivatives (L. L. Thurstone Psychometric Laboratory Report, No. 108). Chapel Hill, North Carolina: The L. L. Thurstone Psychometric Laboratory, July, 1972.

    Google Scholar 

References

  • Bloxom, B. An alternative method of fitting a model of individual differences in multidimenlonal scaling.Psychometrika, 1974,39, 365–367.

    Google Scholar 

  • Bôcher, M.Introduction to higher algebra. New York: MacMillan, 1907.

    Google Scholar 

  • Carroll, J. D. & Chang, J. J. Analysis of individual differences in multidimensional scaling via anN-way generalization of “Eckart-Young” decomposition.Psychometrika, 1970,35, 238–319.

    Google Scholar 

  • Coombs, C. H.A theory of data. New York: Wiley, 1964.

    Google Scholar 

  • de Leeuw, J.Canonical analysis of categorical data. Leiden, the Netherlands: University of Leiden, 1973.

    Google Scholar 

  • de Leeuw, J., Young, F. W. & Takane, Y. Additive structure in qualitative data: An alternating least squares method with opitmal scaling features.Psychometrika, 1976,41, 471–503.

    Google Scholar 

  • Eckart, C. & Young, G. The approximation of one matrix by another of lower rank.Psychometrika, 1936,3, 211–218.

    Google Scholar 

  • Ekman, G. Dimensions of color vision.Journal of Psychology, 1954,38, 467–474.

    Google Scholar 

  • Fisher, R. A.Statistical methods for research workers (10th ed.). Edinburgh: Oliver and Boyd, 1946.

    Google Scholar 

  • Funk, S., Horowitz, A., Lipshitz, R. & Young, F. W. The perceived structure of American ethnic groups: The use of multidimensional scaling in stereotype research.Sociometry, in press.

  • Green, P. E. & Rao, V. R.Applied multidimensional scaling: A comparison of approaches and algorithms. New York: Holt, Rinehart and Winston, 1972.

    Google Scholar 

  • Guttman, L. A general nonmetric technique for finding the smallest coordinate space for a configuration of points.Psychometrika, 1968,33, 469–506.

    Google Scholar 

  • Hageman, L. A. & Prosching, T. A. Aspects of nonlinear block successive overrelaxation.SIAM Journal of Numerical Analysis, 1975,12, 316–335.

    Google Scholar 

  • Hayashi, C. Minimum dimension analysis.Behaviormetrika, 1974,1, 1–24.

    Google Scholar 

  • Horan, C. B. Multidimensional scaling: Combining observations when individuals have different perceptual structures.Psychometrika, 1969,34, 139–165.

    Google Scholar 

  • Johnson, R. M. Pairwise nonmetric multidimensional scaling.Psychometrika, 1973,38, 11–18.

    Google Scholar 

  • Johnson, S. C. Hierarchical clustering schemes.Psychometrika, 1967,32, 241–254.

    Google Scholar 

  • Jones, L. E. & Young, F. W. The structure of a social environment: A longitudinal individual differences scaling of an intact group.Journal of Personality and Social Psychology, 1972,24, 108–121.

    Google Scholar 

  • Jöreskog, K. A general method for analysis of covariance structures.Biometrika, 1970,57, 239–251.

    Google Scholar 

  • Kruakal, J. B. Nonmetric multidimensional scaling.Psychometrika, 1964,29, 1–27; 115–129.

    Google Scholar 

  • Kruskal, J. B. & Carroll, J. D. Geometric models and badness-of-fit functions. In P. R. Krishnaiah,Multivariate analysis (Vol. 2), New York: Academic Press, Inc., 1969.

    Google Scholar 

  • Lawson, C. L. & Hanson, R. J.Solving least squares problems. Englewood Cliffs, N. J.: Prentice-Hall, 1974.

    Google Scholar 

  • Levin, J. Three-mode factor analysis.Psychological Bulletin, 1965,64, 442–452.

    Google Scholar 

  • Levinsohn, J. R. & Young, F. W. Two special-purpose programs that perform nonmetric multidimensional scaling.Journal of Marketing Research, 1974,11, 315–316.

    Google Scholar 

  • Lingoes, J. C.The Guttman-Lingoes nonmetric program series. Ann Arbor, Michigan: Mathesis Press, 1973.

    Google Scholar 

  • Lingoes, J. C. & Roskam, E. E. A mathematical and empirical analysis of two multidimensional scaling algorithms.Psychometrika Monograph Supplement, 1973,38 (4, Pt. 2).

  • McGee, V. C. Multidimensional scaling ofn sets of similarity measures: A nonmetric individual differences approach.Multivariate Behavioral Research, 1968,3, 233–248.

    Google Scholar 

  • Messick, S. J. & Abelson, R. P. The additive constant problem in multidimensional scaling.Psychometrika, 1956,21, 1–15.

    Google Scholar 

  • Miller, G. A. & Nicely, P. E. An analysis of perceptual confusions among some English consonants.Journal of the Acoustical Society of America, 1953,27, 338–352.

    Google Scholar 

  • Peterson, G. E. & Barney, H. L. Control methods used in a study of the vowels.Journal of the Acoustical Society of America, 1952,24, 175–184.

    Google Scholar 

  • Schönemann, P. H. An algebraic solution for a class of subjective metric models.Psychometrika, 1972,37, 441–451.

    Google Scholar 

  • Shepard, R. N. The analysis of proximities: Multidimensional scaling with an unknown distance function.I. Psychometrika, 1962,27, 125–140. (a)

    Google Scholar 

  • Shepard, R. N. The analysis of proximities: Multidimensional scaling with an unknown distance function. II.Psychometrika, 1962,27, 219–246. (b)

    Google Scholar 

  • Shepard, R. N. Stimulus and response generalization: Tests of a model relating generalization of distance in psychological space.Journal of Experimental Psychology, 1958,55, 509–523.

    Google Scholar 

  • Spence, I. A Monte Carlo evaluation of three nonmetric multidimensional scaling algorithms.Psychometrika, 1972,37, 461–486.

    Google Scholar 

  • Stevens, S. S. Mathematics, measurement, and psychophysics. In S. S. Stevens (Ed.),Handbook of experimental psychology. New York: Wiley, 1951.

    Google Scholar 

  • Stoer, J. On the numerical solution of constrained least-squares problems.SIAM Journal of Numerical Analysis, 1971,8, 382–411.

    Google Scholar 

  • Torgerson, W. S. Multidimensional scaling: I. Theory and method.Psychometrika, 1952,17, 401–419.

    Google Scholar 

  • Tucker, L. R. Relations between multidimensional scaling and three-mode factor analysis.Psychometrika, 1972,37, 3–27.

    Google Scholar 

  • Tucker, L. R. Some mathematical notes on three-mode factor analysis.Psychometrika, 1966,31, 279–311.

    Google Scholar 

  • Wilf, H. S. The numerical solution of polynomial equations. In A. Ralston & W. S. Wilf (Eds.),Mathematical methods of digital computers (Vol. 1). New York: Wiley, 1960.

    Google Scholar 

  • Wold, H. & Lyttkens, E. Nonlinear iterative partial least squares (NIPALS) estimation procedures.Bulletin ISI, 1969,43, 29–47.

    Google Scholar 

  • Yates, F. The analysis of replicated experiments when the field results are incomplete.The Empire Journal of Experimental Agriculture, 1933,1, 129–142.

    Google Scholar 

  • Young, F. W. A model for polynomial conjoint analysis algorithms. In R. N. Shepard, A. K. Romney, & S. Nerlove (Eds.),Multidimensional scaling (Vol. 1). New York: Seminar Press, 1972.

    Google Scholar 

  • Young, F. W. Nonmetric multidimensional scaling: Recovery of metric information.Psychometrika, 1970,35, 455–474.

    Google Scholar 

  • Young, F. W. POLYCON: A program for multidimensionally scaling one-, two-, or three-way data in additive, difference, or multiplicative spaces.Behavioral Science, 1973,18, 152–155.

    Google Scholar 

  • Young, F. W. Methods for describing ordinal data with cardinal models.Journal of Mathematical Psychology, 1975,12, 416–436. (a)

    Google Scholar 

  • Young, F. W. Scaling replicated conditional rank-order data.Sociological Methodology, 1975,12, 129–170. (b)

    Google Scholar 

  • Young, F. W., de Leeuw, J., & Takane, Y. Regression with qualitative and quantitative variables: An alternating least squares method with optimal scaling features.Psychometrika, 1976,41, 505–529.

    Google Scholar 

  • Young, F. W. & Torgerson, W. S. TORSCA, a Fortran-IV program for nommetric multidimensional scaling.Behavioral Science, 1968,13, 343–344.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This project was supported in part by Research Grant No. MH10006 and Research Grant No. MH26504, awarded by the National Institute of Mental Health, DHEW. We wish to thank Robert F. Baker, J. Douglas Carroll, Joseph Kruskal, and Amnon Rapoport for comments on an earlier draft of this paper. Portions of the research reported here were presented to the spring meeting of the Psychometric Society, 1975. ALSCAL, a program to perform the computations discussed in this paper, may be obtained from any of the authors.

Jan de Leeuw is currently at Datatheorie, Central Rekeninstituut, Wassenaarseweg 80, Leiden, The Netherlands. Yoshio Takane can be reached at the Department of Psychology, University of Tokyo, Tokyo, Japan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takane, Y., Young, F.W. & de Leeuw, J. Nonmetric individual differences multidimensional scaling: An alternating least squares method with optimal scaling features. Psychometrika 42, 7–67 (1977). https://doi.org/10.1007/BF02293745

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02293745

Key words

Navigation