Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Contrôlabilité des Systèmes Bilinéaires

  • Published:
Mathematical systems theory Aims and scope Submit manuscript

Abstract

We establish some properties of homogeneous bilinear systems, in particular that controllability is not altered by small perturbation of the coefficients. We obtain sufficient conditions for controllability for nonhomogeneous bilinear systems, with single not uniformly bounded inputs, similar to the results obtained by Jurdjevic and Kupka in the homogeneous case.

Résumé

On établit certaines propriétés des systèmes asservis bilinéaires homogènes; en particulier on montre la stabilité de la contrôlabilité sous l'effet d'une petite perturbation des coefficients du système. On obtient des conditions suffisantes de contrôlabilité pour les systèmes bilinéaires non homogènes à entrée scalaire non uniformément bornée comparables à celles obtenues par Jurdjevic et Kupka dans le cas homogène.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Bonnard. “On right invariant control systems.” Control Theory Report n°79, Warwick, July 1979.

  2. W. Boothby, “A transitivity problem from control theory”.J. Differential Equations, 17, 296–307 (1975).

    Google Scholar 

  3. R. W. Brockett. System theory on group manifolds and coset spaces.Siam J. Control, 10, 265–284 (1972).

    Google Scholar 

  4. C. Bruni, G. DiPillo, and G. Koch. Bilinear systems.I.E.E.E., Transactions on Automatic Control, vol. AC-19, n°4, 334–348 (1974).

    Google Scholar 

  5. P. Brunovsky et C. Lobry. Contrôlabilité bang-bang, contrôlabilité différentiable et perturbation des systèmes linéaires. Annali di Matematica Pura ed Applicata, IV, vol. 105, 93–119 (1975).

    Google Scholar 

  6. M. Fliess. Un outil algébrique; les séries formelles non commutatives.Lect. Notes, Econom. Math. Syst., n°131, Springer-Verlag, Berlin, 122–148 (1976).

    Google Scholar 

  7. V. Jurdjevic, H. J. Sussmann. Control Systems on Lie groups.J. Differential Equations, 12, 313–329 (1972).

    Google Scholar 

  8. V. Jurdjevic, H. J. Sussmann. “Controllability of nonlinear systems.”J. Differential Equations, 12, 95–116 (1972).

    Google Scholar 

  9. V. Jurdjevic and I. Kupka. Accessibility on semi-simple Lie groups and their homogeneous spaces. To appear.

  10. V. Jurdjevic, I. Kupka, G. Sallet, et B. Bonnard. Systèmes de champs de vecteurs transitifs sur les groupes de Lie semi-simples et leurs espaces homogènes. Actes du contrès de Bordeaux sur l'Analyse des Systèmes, 1978, à paraitre.

  11. A. J. Krener. “Bilinear and nonlinear realizations of input-output maps.”Siam J. Control 13, 827–834 (1975).

    Google Scholar 

  12. A. J. Krener. “A generalization of Chow's theorem and the bang-bang theorem to nonlinear control problems.”Siam J. Control, 12, 43–51 (1974).

    Google Scholar 

  13. B. Lee and L. Markus. Foundations of optimal control theory. J. Wiley and Sons Inc. New York, 1967.

    Google Scholar 

  14. R. E. Rink and R. R. Mohler. Completely controllable bilinear systems.Siam J. Control, 6, 477–486 (1968).

    Google Scholar 

  15. R. R. Mohler and P. A. Frick. Bilinear demographic control processes. To appear.

  16. R. R. Mohler, G. S. Hsu, and V. R. Karanam. Modeling and control of T-B cell immune processes. To appear.

  17. G. Sallet. Couples de champs de vecteurs de Killing complètement contrôlables sur les sphères et espaces euclidiens. Thèse 3ème cycle, Metz 1976.

  18. H. J. Sussman. Semi-group representations, bilinear approximation of input-output maps and generalized inputs.Lect. Notes Econom. Math. Syst., n°131, Springer-Verlag, Berlin, 172–191 (1976).

    Google Scholar 

  19. H. J. Sussmann. Some properties of vector field systems that are not altered by small perturbations.J. Differential Equations, 20, 292–313 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonnard, B. Contrôlabilité des Systèmes Bilinéaires. Math. Systems Theory 15, 79–92 (1981). https://doi.org/10.1007/BF01786974

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01786974

Navigation