Abstract
We establish some properties of homogeneous bilinear systems, in particular that controllability is not altered by small perturbation of the coefficients. We obtain sufficient conditions for controllability for nonhomogeneous bilinear systems, with single not uniformly bounded inputs, similar to the results obtained by Jurdjevic and Kupka in the homogeneous case.
Résumé
On établit certaines propriétés des systèmes asservis bilinéaires homogènes; en particulier on montre la stabilité de la contrôlabilité sous l'effet d'une petite perturbation des coefficients du système. On obtient des conditions suffisantes de contrôlabilité pour les systèmes bilinéaires non homogènes à entrée scalaire non uniformément bornée comparables à celles obtenues par Jurdjevic et Kupka dans le cas homogène.
Similar content being viewed by others
References
B. Bonnard. “On right invariant control systems.” Control Theory Report n°79, Warwick, July 1979.
W. Boothby, “A transitivity problem from control theory”.J. Differential Equations, 17, 296–307 (1975).
R. W. Brockett. System theory on group manifolds and coset spaces.Siam J. Control, 10, 265–284 (1972).
C. Bruni, G. DiPillo, and G. Koch. Bilinear systems.I.E.E.E., Transactions on Automatic Control, vol. AC-19, n°4, 334–348 (1974).
P. Brunovsky et C. Lobry. Contrôlabilité bang-bang, contrôlabilité différentiable et perturbation des systèmes linéaires. Annali di Matematica Pura ed Applicata, IV, vol. 105, 93–119 (1975).
M. Fliess. Un outil algébrique; les séries formelles non commutatives.Lect. Notes, Econom. Math. Syst., n°131, Springer-Verlag, Berlin, 122–148 (1976).
V. Jurdjevic, H. J. Sussmann. Control Systems on Lie groups.J. Differential Equations, 12, 313–329 (1972).
V. Jurdjevic, H. J. Sussmann. “Controllability of nonlinear systems.”J. Differential Equations, 12, 95–116 (1972).
V. Jurdjevic and I. Kupka. Accessibility on semi-simple Lie groups and their homogeneous spaces. To appear.
V. Jurdjevic, I. Kupka, G. Sallet, et B. Bonnard. Systèmes de champs de vecteurs transitifs sur les groupes de Lie semi-simples et leurs espaces homogènes. Actes du contrès de Bordeaux sur l'Analyse des Systèmes, 1978, à paraitre.
A. J. Krener. “Bilinear and nonlinear realizations of input-output maps.”Siam J. Control 13, 827–834 (1975).
A. J. Krener. “A generalization of Chow's theorem and the bang-bang theorem to nonlinear control problems.”Siam J. Control, 12, 43–51 (1974).
B. Lee and L. Markus. Foundations of optimal control theory. J. Wiley and Sons Inc. New York, 1967.
R. E. Rink and R. R. Mohler. Completely controllable bilinear systems.Siam J. Control, 6, 477–486 (1968).
R. R. Mohler and P. A. Frick. Bilinear demographic control processes. To appear.
R. R. Mohler, G. S. Hsu, and V. R. Karanam. Modeling and control of T-B cell immune processes. To appear.
G. Sallet. Couples de champs de vecteurs de Killing complètement contrôlables sur les sphères et espaces euclidiens. Thèse 3ème cycle, Metz 1976.
H. J. Sussman. Semi-group representations, bilinear approximation of input-output maps and generalized inputs.Lect. Notes Econom. Math. Syst., n°131, Springer-Verlag, Berlin, 172–191 (1976).
H. J. Sussmann. Some properties of vector field systems that are not altered by small perturbations.J. Differential Equations, 20, 292–313 (1976).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Bonnard, B. Contrôlabilité des Systèmes Bilinéaires. Math. Systems Theory 15, 79–92 (1981). https://doi.org/10.1007/BF01786974
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF01786974