Abstract
New systematic approximants are proposed for exponential functions, operators and inner derivation δ H . Remainders of systematic approximants are evaluated explicitly, which give degrees of convergence of approximants. The first approximant corresponds to Trotter's formula [1]: exp(A+B)=\(\mathop {\lim }\limits_{n \to \infty } \) [exp(A/n) exp(B/n)]n. Some applications to physics are also discussed.
Similar content being viewed by others
References
Trotter, H.F.: Proc. Amer. Math. Soc.10, 545 (1959)
Ginibre, J.: In lectures given at the Cárgese Summer School in Statistical Mechanics, July 1969
Asano, T.: J. Phys. Soc. Japan29, 350 (1970)
Suzuki, M., Fisher, M.E.: J. math. Phys.12, 235 (1971)
Suzuki, M.: Prog. Theor. Phys.56, No. 5 (1976)
Magnus, W.: Commun. Pure Appl. Math.7, 649 (1954)
Wilcox, R.M.: J. math. Phys.8, 962 (1967)
Kubo, R.: J. Phys. Soc. Japan12, 570 (1957)
Suzuki, M.: Prog. Theor. Phys.46, 1337 (1971)
Suzuki, M., Miyashita, S., Kuroda, A.: In preparation
Suzuki, M.: Prog. Theor. Phys.53, 1657 (1975); J. Stat. Phys.14, 129 (1976); Prog. Theor. Phys. (submitted)
Author information
Authors and Affiliations
Additional information
Communicated by H. Araki
Rights and permissions
About this article
Cite this article
Suzuki, M. Generalized Trotter's formula and systematic approximants of exponential operators and inner derivations with applications to many-body problems. Commun.Math. Phys. 51, 183–190 (1976). https://doi.org/10.1007/BF01609348
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF01609348