Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Exact algorithms for the vehicle routing problem, based on spanning tree and shortest path relaxations

  • Published:
Mathematical Programming Submit manuscript

Abstract

We consider the problem of routing vehicles stationed at a central facility (depot) to supply customers with known demands, in such a way as to minimize the total distance travelled. The problem is referred to as the vehicle routing problem (VRP) and is a generalization of the multiple travelling salesman problem that has many practical applications.

We present tree search algorithms for the exact solution of the VRP incorporating lower bounds computed from (i) shortest spanningk-degree centre tree (k-DCT), and (ii)q-routes. The final algorithms also include problem reduction and dominance tests.

Computational results are presented for a number of problems derived from the literature. The results show that the bounds derived from theq-routes are superior to those fromk-DCT and that VRPs of up to about 25 customers can be solved exactly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.L. Balinski and R.E. Quandt, “On an integer program for a delivery problem”,Operations Research 12 (1964) 300.

    Google Scholar 

  2. R. Bellman, “On a routing problem”,Quarterly Journal of Applied Mathematics (1958) 87.

  3. N. Christofides,Graph theory, an algorithmic approach (Academic Press, London, 1975).

    Google Scholar 

  4. N. Christofides, “The vehicle routing problem”,Revue Française d'Automatique, Informatique et Recherche Opérationnelle 10 (1976) 55.

    Google Scholar 

  5. N. Christofides, “The travelling salesman problem”, in: N. Christofides, A. Mingozzi, P. Toth and C. Sandi, eds.,Combinatorial optimization (John Wiley and Sons, London, 1979).

    Google Scholar 

  6. N. Christofides, A. Mingozzi and P. Toth, “The vehicle routing problem”, in: N. Christofides, A. Mingozzi, P. Toth and C. Sandi, eds.,Combinatorial optimization (John Wiley and Sons, London, 1979).

    Google Scholar 

  7. N. Christofides, A. Mingozzi and P. Toth, “State-space relaxations for combinatorial problems”, Imperial College internal report IC, OR, 79, 09, July 1979.

  8. C. Clarke and J.Q. Wright, “Scheduling of vehicles from a central depot to a number of delivery points”,Operations Research 12 (1964) 568.

    Google Scholar 

  9. S. Eilon, C. Watson-Gandy and N. Christofides,Distribution management, mathematical modelling and practical analysis (Griffin, London, 1971).

    Google Scholar 

  10. T.J. Gaskell, “Bases for vehicle fleet scheduling”,Operational Research Quarterly 18 (1967) 281.

    Google Scholar 

  11. B.E. Gillet and L.R. Miller, “A heuristic algorithm for the vehicle dispatch problem”,Operations Research 22 (1974) 340.

    Google Scholar 

  12. B.L. Golden, “Vehicle routing problems: formulations and heuristic solution techniques”, ORC technical report 113, Massachusetts Institute of Technology (August 1975).

  13. B.L. Golden, “Recent developments in vehicle routing”, Presented at the Bicentennial Conference on Mathematical Programming (November 1976).

  14. R. Hays, “The delivery problem”, Carnegie Institute of Technology Management Science Research, report 106 (1967).

  15. M. Held and R. Karp, “The TSP and minimum spanning trees I”,Operations Research 18 (1970) 1138.

    Google Scholar 

  16. M. Held and R. Karp, “The TSP and minimum spanning trees II”,Mathematical Programming 1 (1971) 6–25.

    Google Scholar 

  17. D. Houck, J.C. Picard, M. Queyranne and R.R. Vemuganti, “The travelling salesman problem and shortestn-paths”, University of Maryland (1977).

  18. S. Lin and B.W. Kernighan, “An effective heuristic algorithm for the TSP”,Operations Research 21 (1973) 498.

    Google Scholar 

  19. C. Miller, A.W. Tucker and R.A. Zemlin, “Integer programming formulation of the travelling salesman problem”,Journal of the Association for Computing Machinery 7 (1960).

  20. J.F. Pierce, “A two-stage approach to the solution of vehicle dispatching problems”, Presented at the 17th T.I.M.S. International Conference London (1970).

  21. F.A. Tillman and H. Cochran, “A heuristic approach for solving the delivery problem”,Journal of Industrial Engineering 19 (1969) 354.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christofides, N., Mingozzi, A. & Toth, P. Exact algorithms for the vehicle routing problem, based on spanning tree and shortest path relaxations. Mathematical Programming 20, 255–282 (1981). https://doi.org/10.1007/BF01589353

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01589353

Key words

Navigation