Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Idempotent relations and factors of Jacobians

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Accola, R.D.: Riemann surfaces with automorphism groups admitting partitions. Proc. Am. Math. Soc.21, 477–482 (1969)

    Google Scholar 

  2. Accola, R.D.: Two theorems on Riemann surfaces with non-cyclic automorphism groups. Proc. Am. Math. Soc.25, 598–602 (1970)

    Google Scholar 

  3. Accola, R.D.: Riemann surfaces, theta functions, and Abelian automorphism groups. (Lecture Notes Mathematics, Vol. 483, 105 pp). Berlin Heidelberg New York: Springer 1975

    Google Scholar 

  4. Albert, A.A.: Structure of algebras. Am. Math. Soc. Colloq. Publ. Providence, R.I., 1961

  5. Baer, R.: Partitionen endlicher Gruppen. Math. Z.75, 333–372 (1961)

    Article  Google Scholar 

  6. Berthelot, P.: Slopes of Frobenius in crystalline cohomology. Proc. Symp. Pure Math.29, 315–328 (1975)

    Google Scholar 

  7. Curtis, C.W., Reiner, I.: Representation theory of finite groups and associative algebras. New York: Interscience 1962

    Google Scholar 

  8. Curtis, C.W., Reiner, I.: Methods of representation theory. I. New York: Wiley 1981

    Google Scholar 

  9. Curtis, C.W., Reiner, I.: Method of representation theory. II. New York: Wiley 1987

    Google Scholar 

  10. Demazure, M.: Lectures onp-divisible groups. (Lecture Notes Mathematics, Vol. 302, 98 pp.). Berlin Heidelberg New York: Springer 1972

    Google Scholar 

  11. Frey, G., Rück, H.-G.: The strong Lefschetz principle in algebraic geometry. Manuscr. Math.55, 385–401 (1986)

    Article  Google Scholar 

  12. Huppert, B.: Endliche Gruppen. I. Berlin: Springer 1967

    Google Scholar 

  13. Kani, E.: On Castelnuovo's equivalence defect. J. Reine Angew. Math.352, 24–70 (1984)

    Google Scholar 

  14. Kani, E.: Relations between the genera and between the Hasse-Witt invariants of galois coverings of curves. Can. Math. Bull.28, 321–327 (1985)

    Google Scholar 

  15. Kani, E.: Bounds on the number of non-rational subfields of a function field. Invent. Math.85, 185–198 (1986)

    Article  Google Scholar 

  16. Kegel, O.: Nicht-einfache Partitionen endlicher Gruppen. Arch. Math.12, 170–175 (1961)

    Google Scholar 

  17. Lang, S.: Introduction to algebraic and Abelian functions. (2nd ed.). Berlin Heidelberg New York: Springer 1982

    Google Scholar 

  18. Mazur, B.: Modular curves and the Eisenstein ideal. Publ. IHES47, 33–186 (1977)

    Google Scholar 

  19. Milne, J.S.: Abelian varieties. In: Arithmetic geometry G. Cornell, J. Silverman (eds.). Berlin Heidelberg New York: Springer 1986

    Google Scholar 

  20. Mumford, D.: Abelian varieties. London: Oxford University Press 1970

    Google Scholar 

  21. Rehm, H.P.: Über die gruppentheoretische Struktur der Relationen zwischen Relativnormabbildungen in endlichen Galoisschen Körpererweiterungen. J. Number Theory7, 49–70 (1975)

    Article  Google Scholar 

  22. Serre, J.-P.: Abelianl-adic representations and elliptic curves. New York: Benjamin 1968

    Google Scholar 

  23. Serre, J.-P.: Local fields. Berlin Heidelberg New York: Springer 1979

    Google Scholar 

  24. Suzuki, M.: On a finite group with a partition. Arch. Math.12, 241–254 (1961)

    Google Scholar 

  25. Weil, A.: Courbes algébriques et variétés abéliennes. Paris: Hermann 1971

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

NSERC University Research Fellow

Partially supported by a grant from the Natural Science Foundation

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kani, E., Rosen, M. Idempotent relations and factors of Jacobians. Math. Ann. 284, 307–327 (1989). https://doi.org/10.1007/BF01442878

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01442878

Navigation