Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Complexity of common subsequence and supersequence problems and related problems

  • Published:
Cybernetics Aims and scope

Abstract

The article examines polynomial-time and intractable longest common subsequence and subword problems and shortest common supersequence and superword problems, both old and new. The results provide a more complete complexity characterization of these problems. Some applications are discussed, as well as the dual problems of common nonsubwords, nonsuperwords, nonsubsequences, and nonsupersequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Literature Cited

  1. M. R. Garey and D. S. Johnson, Computers and Intractability, Freeman, San Francisco (1979).

    Google Scholar 

  2. A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer Algorithms, Addison-Wesley, Reading, Mass. (1974).

    Google Scholar 

  3. M. L. Fredman, “On computing the length of the longest increasing subsequences,” Discr. Math.,11, No. 1, 29–36 (1975).

    Google Scholar 

  4. M. O. Dayhoff, “Computer aids to protein sequence determination,” J. Theor. Biol.,8, No. 1, 97–112 (1965).

    Google Scholar 

  5. M. O. Dayhoff, “Computer analysis of protein evolution,” Sci. Am.,221, No. 1, 86–95 (1969).

    Google Scholar 

  6. S. B. Needleman and C. S. Wunsch, “A general method applicable to the search for similarities in the amino acid sequence of two proteins,” J. Molec. Biol.,48, 443–453 (1970).

    Google Scholar 

  7. D. Sunkoff and R. J. Cedergren, “A test for nucleotide sequence homology,” J. Molec. Biol.,77, 159–164 (1973).

    Google Scholar 

  8. R. A. Wagner and M. J. Fischer, “The string-to-string correction problem,” J. ACM,21, No. 1, 168–173 (1974).

    Google Scholar 

  9. R. Lowrance and R. W. Wagner, “An extension of the string-to-string correction problem,” J. ACM,22, No. 2, 177–183 (1975).

    Google Scholar 

  10. M. Rodeh, V. R. Pratt, and S. Even, “Linear algorithm for data compression via string matching,” J. ACM,28, No. 1, 16–27 (1981).

    Google Scholar 

  11. S. Y. Lu and K. S. Fu, “A sentence-to-sentence clustering procedure for pattern analysis,” IEEE Trans. Syst. Man, Cybern., SMC-8, 381–389 (1978).

    Google Scholar 

  12. N. M. Kapustin, Development of Technological Parts Machining Processes by Computer [in Russian], Mashinostroenie, Moscow (1976).

    Google Scholar 

  13. K. Tempelhof and H. Lichtenberg, “Technological standardization as a prerequisite for computer-aided design of technological processes,” in: N. M. Kapustin (ed.), Computer-Aided Design of Technological Processes [in Russian], Mashinostroenie, Moscow (1985), pp. 109–153.

    Google Scholar 

  14. A. M. Basin, V. N. Balabolin, V. V. Kryukov, et al., “An interactive system for multilevel design of technological processes of flexible production,” Vestn. Mashinostr., No. 2, 42–44 (1987).

    Google Scholar 

  15. P. H. Sellers, “An algorithm for the distance between two finite sequences,” J. Combin. Theory,16, 253–258 (1974).

    Google Scholar 

  16. D. S. Hirschberg, “A linear space algorithm for computing maximal sequences,” Commun. ACM,18, No. 6, 341–343 (1975).

    Google Scholar 

  17. D. S. Hirschberg, “Algorithms for longest common subsequence problem,” J. ACM,24, No. 4, 664–675 (1977).

    Google Scholar 

  18. J. W. Hunt and T. G. Szymanski, “A fast algorithm for computing longest common subsequences,” Commun. ACM,20, No. 5, 350–353 (1977).

    Google Scholar 

  19. W. J. Masek and M. S. Paterson, “A faster algorithm computing string edit distance,” J. Comput. Syst., Sci.,20, 18–31 (1980).

    Google Scholar 

  20. N. Nakatsu, Y. Kambayashi, and S. Yajima, “A longest common subsequence algorithm suitable for similar text strings,” Acta Inf.,18, 171–179 (1982).

    Google Scholar 

  21. A. Mukhopadhyay, “A fast algorithm for longest-common-subsequence problem,” Inform. Sci.,20, 69–82 (1980)

    Google Scholar 

  22. C. K. Wong and A. K. Chandra, “Bounds for the string editing problem,” J. ACM,23, No. 1, 13–16 (1976).

    Google Scholar 

  23. L. Allison and T. I. Dix, “A bit-string longest-common-subsequence algorithm,” Inform. Process. Lett.,23, 305–310 (1986).

    Google Scholar 

  24. C. B. Yang and R. C. T. Lee, “The mapping of 2-D array processors to 1-D array processors,” Parallel Comput.,3, 217–229 (1986).

    Google Scholar 

  25. W. J. Hsu and M. W. Du, “New algorithms for LCS problem,” J. Comput. Syst. Sci.,29, No. 2, 133–152 (1984).

    Google Scholar 

  26. S. K. Kumar and C. P. Rangan, “A linear space algorithm for the LCS problem,” Acta Inf.,24, 353–362 (1987).

    Google Scholar 

  27. A. V. Aho, D. S. Hirschberg, and J. D. Ullman, “Bounds on the complexity of the longest common subsequence problem,” J. ACM,23, No. 1, 1–12 (1976).

    Google Scholar 

  28. D. Maier, “The complexity of some problems on subsequences and supersequences,” J. ACM,25, No. 2, 322–336 (1978).

    Google Scholar 

  29. Yu. V. Matiyasevich, “On real-time recognition of the inclusion relation,” Zap. Nauch. Sem. LOMI AN SSSR,20, 104–114 (1971).

    Google Scholar 

  30. P. Weiner, “Linear pattern matching algorithms,” IEEE 14th Ann. Symp. on Switching and Automata Theory (1973), pp. 1–11.

  31. E. M. McCreight, “space-economical suffix tree construction algorithm,” J. ACM,23, 262–272 (1976).

    Google Scholar 

  32. Z. Galil, “String matching in real time,” J. ACM,28, No. 1, 134–146 (1981).

    Google Scholar 

  33. E. Reingold, J. Nievergelt, and N. Deo, Combinatorial Algorithms. Theory and Practice, Prentice-Hall, Englewood Cliffs, NJ (1977).

    Google Scholar 

  34. J. Gallant, D. Maier, and J. A. Storer, “On finding minimal length superstring,” J. Comput. Syst. Sci.,20, No. 1, 50–58 (1980).

    Google Scholar 

  35. M. Aigner, Combinatorial Theory, Springer, Berlin (1979).

    Google Scholar 

  36. C. Wrathall, “Complete sets and the polynomial-time hierarchy,” Theor. Comput. Sci.,3, 23–33 (1976).

    Google Scholar 

  37. A. Salomaa, Jewels of Formal Language Theory [Russian translation], Mir, Moscow (1986).

    Google Scholar 

  38. M. L. Gerver, “Three-valued numbers and digraphs,” Kvant., No. 2, 32–35 (1987).

    Google Scholar 

Download references

Authors

Additional information

Translated from Kibernetika, No. 5, pp. 1–13, September–October, 1989.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Timkovskii, V.G. Complexity of common subsequence and supersequence problems and related problems. Cybern Syst Anal 25, 565–580 (1989). https://doi.org/10.1007/BF01075212

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01075212

Keywords

Navigation