Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Representing orders on the plane by translating convex figures

  • Published:
Order Aims and scope Submit manuscript

Abstract

Given a finite collection of disjoint, convex figures on the plane, is it possible to assign to each a single direction of motion so that this collection of figures may be separated, through an arbitrary large distance, by translating each figure one at a time, along its assigned direction? We present a computational model for this separability problem based on the theory of ordered sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • B.Bollobas (1977) Colouring lattices,Alg. Univ. 7, 313–314.

    Google Scholar 

  • B. Chazelle, T. Ottmann, E. Soisalon-Soininen, and D. Wood (1983) The complexity and decidability of separation, Tech. Report CS-83-34, University of Waterloo.

  • R.Dawson (1984) On removing a ball without disturbing the others,Math. Mag. 57, 27–30.

    Google Scholar 

  • P.Erdös (1959) Graph theory and probability,Canad. J. Math. 11, 34–38.

    Google Scholar 

  • I.Fáry (1948) On the straight line representation of planar graphs,Acta. Sci. Math. (Szeged) 11, 229–233.

    Google Scholar 

  • L. J. Guibas and F. F. Yao (1980) On translating a set of rectangles,Proc. 12th Annual ACM Symposium Th. of Comp., pp. 154–160.

  • D.Kelly (1981) On the dimension of partially ordered sets,Discrete Math. 35, 135–156.

    Google Scholar 

  • D. Kelly (1987) Fundamentals of planar ordered sets,Discrete Math.

  • D.Kelly and I.Rival (1975) Planar lattices,Canad. J. Math. 27, 636–665.

    Google Scholar 

  • M. Mansouri and G. T. Toussaint (1985) Translation queries for convex polygons,Proc. IASTED Internat. Sympos. Robotics and Automation., Lugano, Switzerland.

  • J.Nešetřil and V.Rödl (1984) Combinatorial partitions of finite posets and lattices-Ramsey lattices,Alg. Univ. 19, 106–119.

    Google Scholar 

  • R. Nowakowski, I. Rival, and J. Urrutia (1987) Representing orders on the plane by translating points and lines, to appear.

  • J.-R. Sack and G. T. Toussaint (1985) Translating polygons in the plane,Proc. STACS '85, Saarbrücken, pp. 310–321.

  • G. T.Toussaint (1985) Movable separability of sets, inComputational Geometry (G. T.Toussaint, ed.), North Holland, Amsterdam, pp. 335–376.

    Google Scholar 

  • B.Sands (1985) Problem 2.7, inGraphs and Order (ed. I.Rival), D. Reidel, Dordrecht, p. 531.

    Google Scholar 

  • G. X. Viennot (1985) Problèmes combinatoires posés par la physique statistique, Séminaire Bourbaki, No. 626, inAstérisque, No. 121-122 225-246.

  • K.Wagner (1936) Bemerkungen zum Vierfarbenproblem,Jber. Deutsch. Math. Verein. 46, 26–32.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by P. Hell

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rival, I., Urrutia, J. Representing orders on the plane by translating convex figures. Order 4, 319–339 (1988). https://doi.org/10.1007/BF00714475

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00714475

AMS subject classification (1980)

Key words

Navigation