Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Characterization of an Azospirillum brasilense Sp7 gene homologous to Alcaligenes eutropbus pbbB and to Rbizobium meliloti nodG

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

A 4 kb SalI fragment from Azospirillum brasilense Sp7 that shares homology with a 6.8 kb EcoRI fragment carrying nodGEFH and part of nodP of Rhizobium meliloti 41 was cloned in pUC18 to yield pAB503. The nucleotide sequence of a 2 kb SalI-SmaI fragment of the pAB503 insert revealed an open reading frame, named ORF3, encoding a polypeptide sharing 40% identity with R. mehloti NodG. The deduced polypeptide also shared 60% identity with the Alcaligenes eutrophus NADPH-dependent acetoacetyl-CoA (AA-CoA) reductase, encoded by the pbbB gene and involved in poly-β-hydroxybutyrate (PHB) synthesis. Northern blot analysis and promoter extension mapping indicated that ORF3 is expressed as a monocistronic operon from a promoter that resembles the Escherichia coli σ70 consensus promoter. An ORF3-lacZ translational fusion was constructed and was very poorly expressed in E. coli, but was functional and constitutively expressed in Azospirillum. Tn5-Mob insertions in ORF3 did not affect growth, nitrogen fixation, PHB synthesis or NAD(P)H-linked AA-CoA reductase activity. An ORF3 DNA sequence was used to probe total DNA of several Azospirillum strains. No ORF3 homologues were found in A. irakense, A. amazonense, A. halopraeferens or in several A. lipoferum strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472

    Google Scholar 

  • Baldani JI, Baldani VLD, Seldin L, Döbereiner J (1986) Characterization of Herbaspirillum seropedicae pgem. nov., sp. nov., a rootassociated nitrogen-fixing bacterium. Int J Syst Bacteriol 36:86–93

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for quantification of microgram quantities of proteins utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Google Scholar 

  • Carrigan CM, Haarsma JA, Smith MT, Wake RG (1987) Sequence features of the replication terminus of the Bacillus subtilis chromosome. Nucleic Acids Res 15:8501–8509

    Google Scholar 

  • Chia W, Savakis C, Karp R, Pelham H, Ashburner M (1985) Mutation of the adh gene of Drosophila melanogaster containing an internal tandem duplication. J Mol Biol 186:679–688

    Google Scholar 

  • Coleman JP, White WB, Lijewski M, Hylemon PB (1988) Nucleotide sequence and regulation of a gene involved in bile acid 7-dehydroxylation by Eubacterium sp. strain VPI 12708. J Bacteriol 170:2070–2077

    Google Scholar 

  • Dayhoff MO, Hunt LT, Hurst-Calderone S (1978) Composition of proteins. In: Dayhoff MO (ed) Atlas of protein sequence and structure. National Biomedical Research Foundation, Washington DC, pp 363–364

    Google Scholar 

  • Debellé F, Sharma SB (1986) Nucleotide sequence of Rhizobium meliloti RCR2011 gene involved in host specificity of modulation. Nucleic Acids Res 14:7453–7472

    Google Scholar 

  • Debellé F, Rosenberg C, Vasse J, Maillet F, Martinez E, Dénarié J, Truchet G (1986) Assignment of symbiotic developmental phenotypes to common and specific nodulation (nod) loci of Rhizobium meliloti. J Bacteriol 168:1075–1086

    Google Scholar 

  • Delledonne M, Porcari R, Fogher C (1990) Nucleotide sequence of the nodG gene of Azospirillum brasilense. Nucleic Acids Res 18:6453

    Google Scholar 

  • de Zamaroczy M, Delorme F, Elmerich C (1989) Regulation of transcription and promoter mapping of the structural genes for nitrogenase (nifHDK) of Azospirillum brasilense Sp7. Mol Gen Genet 220:88–94

    Google Scholar 

  • Ditta G, Schmidhauser T, Jakobson E, Lu P, Liang XW, Finlay DR, Guiney D, Helinski D (1985) Plasmids related to the broad host range vector pRK290, useful for gene cloning and for monitoring gene expression. Plasmid 13:149–153

    Google Scholar 

  • Elmerich C, Bozouklian H, Vieille C, Fogher C, Perroud B, Perrin A, Vanderleyden J (1987) Azospirillum: genetics of nitrogen fixation and interaction with plants. Philos Trans R Soc [Biol] 317:183–192

    Google Scholar 

  • Elmerich C, Zimmer W, Vieille C (1991) Associative nitrogen-fixing bacteria. In: Evans H, Burris R, Stacey G (eds) Biological nitrogen fixation. Chapman and Hall, New York, pp 211–257

    Google Scholar 

  • Fogher C, Dusha I, Barbot P, Elmerich C (1985) Heterologous hybridization of Azospirillum DNA to Rhizobium nod and fix genes. FEMS Microbiol Lett 30:245–249

    Google Scholar 

  • Franche C, Elmerich C (1981) Physiological properties and plasmid content of several strains of Azospirillum brasilense and A. lipoferum. Ann Inst Pasteur Microbiol A132:3–17

    Google Scholar 

  • Fukui T, Ito M, Saito T, Tomita K (1987) Purification and characterization of NADP-linked acetoacetyl-CoA reductase from Zoogloea ramigera 1-16-M. Biochim Biophys Acta 917:365–371

    Google Scholar 

  • Galimand M, Vieille C, Perroud B, Onyeocha I, Elmerich C (1988) Advances in genetics of Azospirillum brasilense Sp7: use of Tn5 mutagenesis for gene mapping and identification. In: Klingmüller W (ed) Azospirillum IV: Genetics, physiology, ecology. Springer-Verlag, Berlin Heidelberg, pp 1–7

    Google Scholar 

  • Galimand M, Perroud B, Delorme F, Paquelin A, Vieille C, Bozouklian H, Elmerich C (1989) Identification of DNA regions homologous to nitrogen fixation genes nifE, nifUS and fixABC in Azospirillum brasilense Sp7. J Gen Microbiol 135:1047–1059

    Google Scholar 

  • Gauthier D, Elmerich C (1977) Relationship between glutamine synthetase and nitrogenase in Spirillum lipoferum. FEMS Microbiol Lett 2:101–104

    Google Scholar 

  • Hallam S, Malpartida F, Hopwood D (1989) DNA sequence, transcription and deduced function of a gene involved in polyketide antibiotic biosynthesis in Streptomyces coelicolor. Gene 74:305–320

    Google Scholar 

  • Hawley DK, McClure WR (1983) Compilation and analysis of Escherichia coli promoter DNA sequences. Nucleic Acids Res 11:2237–2255

    Google Scholar 

  • Haywood GW, Anderson AJ, Chu L, Dawes EA (1988) The role of NADH- and NADPH-linked acetoacetyl-CoA reductases in the poly-3-hydroxybutyrate synthesizing organism Alcaligenes eutrophus. FEMS Microbiol Lett 52:259–264

    Google Scholar 

  • Heilmann HJ, Maegert HJ, Gassen HG (1988) Identification and isolation of glucose dehydrogenase genes of Bacillus megaterium M1286 and their expression in Escherichia coliL. Eur J Biochem 174:485–490

    Google Scholar 

  • Henikoff S (1984) Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene 28:351–359

    Google Scholar 

  • Hennecke H, Bott M, Ramseier T, Thöny-Meyer L, Fisher HM, Anthamatten D, Kullik I, Thöny B (1990) A genetic approach to analyze the critical role of oxygen in bacteroid metabolism. In: Gresshoff PM, Roth LE, Stacey G, Newton WE (eds) Nitrogen fixation: achievements and objectives Chapman and Hall, New York London, pp 293–300

    Google Scholar 

  • Hopwood DA, Sherman DH (1990) Molecular genetics of polyketides and its comparison to fatty acid biosynthesis. Annu Rev Genet 24:37–66

    Google Scholar 

  • Kaminski PA, Elmerich C (1991) Involvement of fixLJ in the regulation of nitrogen fixation in Azorhizobium caulinodans. Mol Microbiol 5:665–673

    Google Scholar 

  • Khammas KM, Ageron E, Grimont PAD, Kaiser P (1989) Azospirillum irakense sp. nov., a nitrogen-fixing bacterium associated with rice roots and rhizosphere soils. Res Microbiol 140:679–693

    Google Scholar 

  • Kingston RE (1989) Primer extension. In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) Current protocols in molecular biology. Greene Publishing & Wiley-Interscience, New York, pp 4.8.1–4.8.3

    Google Scholar 

  • Kondorosi A (1990) Overview on genetics of nodule induction: factors controlling nodule induction by Rhizobium meliloti. In: Hennecke H, Verma DPS (edS) Advances in molecular genetics of plant-microbe interactions, Kluver Academic Publishers, Dordrecht Boston London, pp 111–118

    Google Scholar 

  • Law JH, Slepecky RA (1961) Assay of poly-β-hydroxybutyric acid. J Bacteriol 82:33–36

    Google Scholar 

  • Loviny T, Norton PM, Hartley BS (1985) Ribitol dehydrogenase of Klebsiella aerogenes: sequence of the structural gene. Biochem J 230:579–585

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin-phenol reagent. J Biol Chem 193:256–275

    Google Scholar 

  • Magalhaes FM, Baldani JI, Souto SM, Kuykendall JR, Döbereiner J (1983) A new acid-tolerant Azospirillum species. Ann Acad Bras Cien 55:417–430

    Google Scholar 

  • Messing J (1983) New M13 vectors for cloning. Methods Enzymol 101:20–79

    Google Scholar 

  • Michiels K, Vanderleyden J, Van Gool A (1989) Azospirillum-plant root associations: a review. Biol Fertil Soils 8:356–368

    Google Scholar 

  • Miller J (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, p 466

    Google Scholar 

  • Muto A, Osawa S (1987) The guanine and cytosine content of genomic DNA and bacterial evolution. Proc Natl Acad Sci USA 84:166–169

    Google Scholar 

  • Navre M, Ringold GM (1988) A growth factor-repressible gene associated with protein kinase C-mediated inhibition of adipocyte differentiation. J Cell Biol 107:279–286

    Google Scholar 

  • Onycocha I, Vieille C, Zimmer W, Baca BE, Flores M, Palacios R, Elmerich C (1990) Physical map and properties of a 90 MDa plasmid of Azospirillum brasilense Sp7. Plasmid 23:169–182

    Google Scholar 

  • Pearson WR, Lipman DJ (1988) Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 85:2444–2448

    Google Scholar 

  • Peoples OP, Sinskey AJ (1989a) Poly-β-hydroxybutyrate biosynthesis in Alcaligenes eutrophus H16: Characterization of the genes encoding β-ketothiolase and acetoacetyl-CoA reductase. J Biol Chem 264:15293–15297

    Google Scholar 

  • Peoples OP, Sinskey AJ (1989b) Poly-β-hydroxybutyrate biosynthesis in Alcaligenes eutrophus H16: Identification and characterization of the PHB polymerase gene (phbQ). J Biol Chem 264:15298–15303

    Google Scholar 

  • Peoples OP, (1989c) Fine structure of the Zoogloea ramigera phbA-phbB locus encoding β-ketothiolase and acetoacetyl-CoA reductase: nucleotide sequence of phbB. Mol Microbiol 3:349–357

    Google Scholar 

  • Reinhold B, Hurek T, Fendrik I, Pot B, Gillis M, Kersters K, Thielemans S, De Ley J (1987) Azospirillum halopraeferens sp. nov., a nitrogen-fixing organism associated with roots of kallar grass (Leptochloa fusca (L.) Kunth) Int J Syst Bacteriol 37:4351

    Google Scholar 

  • Ritchie GAF, Senior PJ, Dawes EA (1971) The purification and characterization of acetoacetyl-Coenzyme A reductase from Azotobacter beyerinckii. Biochem J 121:308–316

    Google Scholar 

  • Sambrook J, Fritsch E, Maniatis T (1988) Molecular cloning, 2nd edn, vol 1–3. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5466

    Google Scholar 

  • Schubert P, Steinbüchel A, Schlegel HG (1988) Cloning of the Alcaligenes eutrophus genes for synthesis of poly-β-hydroxybutyric acid (PHB) and synthesis of PHB in Escherichia coli. J Bacteriol 170:5837–5847

    Google Scholar 

  • Schubert P, Krüger N, Steinbüchel A (1991) Molecular analysis of the Alcaligenes eutrophus poly(3-hydroxybutyrate) biosynthetic operon: identification of the N terminus of poly(3-hydroxybutyrate) synthase and identification of the promoter. J Bacteriol 173:168–175

    Google Scholar 

  • Shine J, Dalgarno L (1974) The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to non-sense triplets and ribosome binding sites. Proc Natl Acad Sci USA 71:1341–1346

    Google Scholar 

  • Simon R (1984) High frequency mobilization of gram-negative bacterial replicons by the in vitro constructed Tn5-Mob transposon. Mol Gen Genet 196:413–420

    Google Scholar 

  • Staden R (1983) Computer methods for DNA sequencers. In: Hindley J, Worth TS, Burdon RH (eds) DNA sequencing. Elsevier Biochemical Press, Amsterdam, pp 311–333

    Google Scholar 

  • Steinbüchel A, Schlegel HG (1991) Physiology and molecular genetics of poly(β-hydroxy-alcanoic acid) synthesis in Alcaligenes eutrophus. Mol Microbiol 5:535–542

    Google Scholar 

  • Tal S, Okon Y (1985) Production of the reserve material poly-β-hydroxybutyrate and its function in Azospirillum brasilense Cd. Can J Microbiol 31:608–613

    Google Scholar 

  • Tal S, Smirnoff P, Okon Y (1990a) The regulation of poly-β-hydroxybutyrate metabolism in Azospirillum brasilense during balanced growth and starvation. J Gen Microbiol 136:1191–1196

    Google Scholar 

  • Tal S, Smirnoff P, Okon Y (1990b) Purification and characterization of d(−)-β-hydroxybutyrate dehydrogenase from Azospirillum brasilense Cd. J Gen Microbiol 136:645–649

    Google Scholar 

  • Tarrand JJ, Krieg NR, Döbereiner J (1978) A taxonomic study of the Spirillum lipoferum group, with the description of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can J Microbiol 24:967–980

    Google Scholar 

  • Thöny B, Fischer HM, Anthamatten D, Bruderer T, Hennecke H (1987) The symbiotic nitrogen fixation regulatory operon (fixRnifA) of Bradyrhizobium japonicum is expressed aerobically and is subject to a novel, nifA-independent type of activation. Nucleic Acids Res 15:8479–8499

    Google Scholar 

  • Tinoco A Jun, Borer PN, Dengler B, Levine MD, Uhlenbeck DC, Crothers DM, Gralla J (1973) Improved estimation of secondary structure in ribonucleic acids. Nature New Biol 246:40–41

    Google Scholar 

  • Vieille C, Elmerich C (1990) Characterization of two Azospirillum brasilense Sp7 plasmid genes homologous to Rhizobium meliloti nodPQ. Mol Plant-Microbe Interact 3:389–400

    Google Scholar 

  • Yamada M, Saier JR MH (1987) Glucitol-specific enzymes of the phosphotransferase system in Escherichia coli. I. Nucleotide sequence of the gut operon. J Biol Chem 262:5455–5463

    Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119

    Google Scholar 

  • Zimmer W, Aparicio C, Elmerich C (1991) Relationship between tryptophan biosynthesis and indole-3-acetic acid production in Azospirillum: identification and sequencing of a trpGDC cluster. Mol Gen Genet 229:41–51

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Hennecke

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vieille, C., Elmerich, C. Characterization of an Azospirillum brasilense Sp7 gene homologous to Alcaligenes eutropbus pbbB and to Rbizobium meliloti nodG. Molec. Gen. Genet. 231, 375–384 (1992). https://doi.org/10.1007/BF00292706

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00292706

Key words

Navigation