Abstract
Let the points P 1, P 2, ..., P nbe given in the plane such that there are no three on a line. Then there exists a point of the plane which is contained in at least n 3/27 (open) P iPjPktriangles. This bound is the best possible.
Similar content being viewed by others
References
Baker, M.J.C.: ‘Covering a Polygon with Triangles: A Caratheodory-type Theorem’, J. Austral. Math. Soc. (A) 28 (1979), 229–234.
Bárány, I.: ‘A Generalization of Caratheodory's Theorem’, Discrete Math. 40 (1982), 141–152.
Birch, B. J.: ‘On 3n Points in a Plane’, Proc. Cambridge Phil. Soc. 55 (1959), 289–293.
Boros, E. and Füredi, Z.: Su un teorema di Kárteszi nella geometria combinatoria' (in Italian), Archimede 2 (1977), 71–76.
Danzer, L., Grünbaum, B., and Klee, V.: ‘Kelly's Theorem and Its Relatives’, in V. Klee (ed.), Proc. Symp. in Pure Math. Vol. 7, Amer. Math. Soc., Providence, R. I., 1963.
Kárteszi, F.: ‘Extremalaufgaben über endliche Punktsysteme’, Publ. Math. Debrecen 4 (1955), 16–27.
Moon, J. W.: Topics on Tournaments, Holt, Rinehart and Winston, New York, 1968.
Tverberg, H.: ‘A Generalization of Radon's Theorem’, J. London Math. Soc. 41 (1966), 123–128.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Boros, E., Füredi, Z. The number of triangles covering the center of an n-set. Geom Dedicata 17, 69–77 (1984). https://doi.org/10.1007/BF00181519
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF00181519