Abstract
P/T nets with reset and transfer arcs can be seen as counter-machines with some restricted set of operations. Surprisingly, several problems related to boundedness are harder for Reset nets than for the more expressive Transfer nets. Our main result is that boundedness is undecidable for nets with three reset arcs, while it is decidable for nets with two resetable places.
P. Janč is partially supported by the Grant Agency of the Czech Republic, Grant No. 201/97/0456
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
T. Araki and T. Kasami. Some decision problems related to the reachability problem for Petri nets. Theor. Comp. Sci., 3(1):85–104, 1977.
A. Arnold and M. Latteux. Récursivité et cônes rationnels fermés par intersection. Calcolo, XV(IV):381–394, 1978.
A. Bouajjani and R. Mayr. Model checking lossy vector addition systems. In Proc. 16th Ann. Symp. Theoretical Aspects of Computer Science (STACS’99), Trier, Germany, Mar. 1999, vol. 1563 of LNCS, pp 323–333. Springer, 1999.
E. Badouel and J. Oliver. Reconfigurable nets, a class of high level Petri nets supporting dynamic changes within workflow systems. Research Report 3339, INRIA, January 1998.
G. Ciardo. Petri nets with marking-dependent arc cardinality: Properties and analysis. In Proc. 15th Int. Conf. Applications & Theory of Petri Nets, Zaragoza, Spain, June 1994, vol. 815 of LNCS, pp 179–198. Springer, 1994.
C. Dufourd, A. Finkel, and Ph. Schnoebelen. Reset nets between decidability and undecidability. In Proc. 25th Int. Coll. Automata, Languages, and Programming (ICALP’98), Aalborg, Denmark, July 1998, vol. 1443 of LNCS, pp 103–115. Springer, 1998.
C. Dufourd. Réseaux de Petri avec reset/transfert: Décidabilité et indécidabilité. Thèse de Docteur en Sciences de l’ École Normale Supérieure de Cachan, October 1998.
J. Esparza, A. Finkel, and R. Mayr. On the verification of broadcast protocols. In Proc. 14th IEEE Symp. Logic in Computer Science (LICS’99),Trento, Italy, July 1999, 1999.
A. Finkel and Ph. Schnoebelen. Fundamental structures in well-structured infinite transition systems. In Proc. 3rd Latin American Theoretical Informatics Symposium (LATIN’98), Campinas, Brazil, Apr. 1998, vol. 1380 of LNCS, pp 102–118. Springer, 1998.
J. Hopcroft and J.-J. Pansiot. On the reachability problem for 5-dimensional vector addition systems. Theor. Comp. Sci., 8(2):135–159, 1979.
M. Kishinevsky, J. Cortadella, A. Kondratyev, L. Lavagno, A. Taubin, and A. Yakovlev. Coupling asynchrony and interrupts: Place chart nets. In Proc. 18th Int. Conf. Application & Theory of Petri Nets, Toulouse, France, June 1997, vol. 1248 of LNCS, pp 328–347. Springer, 1997.
C. Lakos and S. Christensen. A general approach to arc extensions for coloured Petri nets. In Proc. 15th Int. Conf. Applications & Theory of Petri Nets,Zaragoza, Spain, June 1994, vol. 815 of LNCS, pp 338–357. Springer, 1994.
R. Mayr. Lossy counter machines. Tech. Report TUM-I9830, Institut für Informatik, TUM, Munich, Germany, October 1998.
R. Valk. Self-modifying nets, a natural extension of Petri nets. In Proc. 5th Int. Coll. Automata, Languages, and Programming (ICALP’78), Udine, Italy, Jul. 1978, vol. 62 of LNCS, pp 464–476. Springer, 1978.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1999 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dufourd, C., Schnoebelen, P., Jančar, P. (1999). Boundedness of Reset P/T Nets. In: Wiedermann, J., van Emde Boas, P., Nielsen, M. (eds) Automata, Languages and Programming. Lecture Notes in Computer Science, vol 1644. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48523-6_27
Download citation
DOI: https://doi.org/10.1007/3-540-48523-6_27
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-66224-2
Online ISBN: 978-3-540-48523-0
eBook Packages: Springer Book Archive