Nothing Special   »   [go: up one dir, main page]

Skip to main content

Boundedness of Reset P/T Nets

  • Conference paper
  • First Online:
Automata, Languages and Programming

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1644))

Abstract

P/T nets with reset and transfer arcs can be seen as counter-machines with some restricted set of operations. Surprisingly, several problems related to boundedness are harder for Reset nets than for the more expressive Transfer nets. Our main result is that boundedness is undecidable for nets with three reset arcs, while it is decidable for nets with two resetable places.

P. Janč is partially supported by the Grant Agency of the Czech Republic, Grant No. 201/97/0456

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. T. Araki and T. Kasami. Some decision problems related to the reachability problem for Petri nets. Theor. Comp. Sci., 3(1):85–104, 1977.

    Article  MathSciNet  Google Scholar 

  2. A. Arnold and M. Latteux. Récursivité et cônes rationnels fermés par intersection. Calcolo, XV(IV):381–394, 1978.

    Article  Google Scholar 

  3. A. Bouajjani and R. Mayr. Model checking lossy vector addition systems. In Proc. 16th Ann. Symp. Theoretical Aspects of Computer Science (STACS’99), Trier, Germany, Mar. 1999, vol. 1563 of LNCS, pp 323–333. Springer, 1999.

    Google Scholar 

  4. E. Badouel and J. Oliver. Reconfigurable nets, a class of high level Petri nets supporting dynamic changes within workflow systems. Research Report 3339, INRIA, January 1998.

    Google Scholar 

  5. G. Ciardo. Petri nets with marking-dependent arc cardinality: Properties and analysis. In Proc. 15th Int. Conf. Applications & Theory of Petri Nets, Zaragoza, Spain, June 1994, vol. 815 of LNCS, pp 179–198. Springer, 1994.

    Google Scholar 

  6. C. Dufourd, A. Finkel, and Ph. Schnoebelen. Reset nets between decidability and undecidability. In Proc. 25th Int. Coll. Automata, Languages, and Programming (ICALP’98), Aalborg, Denmark, July 1998, vol. 1443 of LNCS, pp 103–115. Springer, 1998.

    Chapter  Google Scholar 

  7. C. Dufourd. Réseaux de Petri avec reset/transfert: Décidabilité et indécidabilité. Thèse de Docteur en Sciences de l’ École Normale Supérieure de Cachan, October 1998.

    Google Scholar 

  8. J. Esparza, A. Finkel, and R. Mayr. On the verification of broadcast protocols. In Proc. 14th IEEE Symp. Logic in Computer Science (LICS’99),Trento, Italy, July 1999, 1999.

    Google Scholar 

  9. A. Finkel and Ph. Schnoebelen. Fundamental structures in well-structured infinite transition systems. In Proc. 3rd Latin American Theoretical Informatics Symposium (LATIN’98), Campinas, Brazil, Apr. 1998, vol. 1380 of LNCS, pp 102–118. Springer, 1998.

    Chapter  Google Scholar 

  10. J. Hopcroft and J.-J. Pansiot. On the reachability problem for 5-dimensional vector addition systems. Theor. Comp. Sci., 8(2):135–159, 1979.

    Article  MathSciNet  Google Scholar 

  11. M. Kishinevsky, J. Cortadella, A. Kondratyev, L. Lavagno, A. Taubin, and A. Yakovlev. Coupling asynchrony and interrupts: Place chart nets. In Proc. 18th Int. Conf. Application & Theory of Petri Nets, Toulouse, France, June 1997, vol. 1248 of LNCS, pp 328–347. Springer, 1997.

    Google Scholar 

  12. C. Lakos and S. Christensen. A general approach to arc extensions for coloured Petri nets. In Proc. 15th Int. Conf. Applications & Theory of Petri Nets,Zaragoza, Spain, June 1994, vol. 815 of LNCS, pp 338–357. Springer, 1994.

    Google Scholar 

  13. R. Mayr. Lossy counter machines. Tech. Report TUM-I9830, Institut für Informatik, TUM, Munich, Germany, October 1998.

    Google Scholar 

  14. R. Valk. Self-modifying nets, a natural extension of Petri nets. In Proc. 5th Int. Coll. Automata, Languages, and Programming (ICALP’78), Udine, Italy, Jul. 1978, vol. 62 of LNCS, pp 464–476. Springer, 1978.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dufourd, C., Schnoebelen, P., Jančar, P. (1999). Boundedness of Reset P/T Nets. In: Wiedermann, J., van Emde Boas, P., Nielsen, M. (eds) Automata, Languages and Programming. Lecture Notes in Computer Science, vol 1644. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48523-6_27

Download citation

  • DOI: https://doi.org/10.1007/3-540-48523-6_27

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66224-2

  • Online ISBN: 978-3-540-48523-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics