Nothing Special   »   [go: up one dir, main page]

Skip to main content

Pattern Matching Problems over 2-Interval Sets

  • Conference paper
  • First Online:
Combinatorial Pattern Matching (CPM 2002)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2373))

Included in the following conference series:

Abstract

We study the computational complexity of pattern matching problems over 2-interval sets. These problems occur in the context of molecular biology when a structured pattern, i.e., a RNA secondary structure, has to be found in a sequence. We show that the Pattern Matching Over 2-Interval Set problem is NP-complete for structured patterns where no pair precedes the other, but can be solved in polynomial time for several interesting special cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. B. Billoud, M. Kontic, and A. Viari. Palingol: a declarative programming language to describe nucleic acids secondary structures and to scan sequence database. Nucl. Acids Res., 24:1395–403, 1996.

    Article  Google Scholar 

  2. I. Dagan, M. C. Golumbic, and R. Y. Pinter. Trapezoid graphs and their coloring. Discrete Appl. Math., 21:35–46, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  3. P. Evans. Finding common subsequences with arcs and pseudoknots. In Proceedings of the 10th Annual Symposium Combinatorial Pattern Matching (CPM 1999), volume 1645 of Lecture Notes in Computer Science, pages 270–280, 1999.

    Chapter  Google Scholar 

  4. S. Felsner, R. Müller, and L. Wernisch. Trapezoid graphs and generalizations: Geometry and algorithms. Discrete Appl. Math., 74:13–32, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  5. M. R. Garey and D. S. Johnson. Computers and intractability: a guide to the theory of NP-completeness. W. H. Freeman, San Franciso, 1979.

    MATH  Google Scholar 

  6. F. Gavril. Algorithms for a maximum clique and a minimum independent set of a circle graph. Networks, 3:261–273, 1973.

    Article  MATH  MathSciNet  Google Scholar 

  7. D. Goldman, S. Istrail, and C. H. Papadimitriou. Algorithmic aspects of protein structure similarity. In IEEE Proceedings of the 40th Annual Conference of Foundations of Computer Science (FOCS99), pages 512–521, 1999.

    Google Scholar 

  8. M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York, 1980.

    MATH  Google Scholar 

  9. U. I. Gupta, D. T. Lee, and J.Y-T. Leung. Efficient algorithms for interval graph and circular-arc graphs. Networks, 12:459–467, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  10. T. Jiang, G.-H. Lin, B. Ma, and K. Zhang. The longest common subsequence problem for arc-annotated sequences. In Proceedings of the 11th Annual Symposium on Combinatorial Pattern Matching (CPM 2000), volume 1848 of Lecture Notes in Computer Science, pages 154–165, 2000.

    Chapter  Google Scholar 

  11. P. Kilpeläinen. Tree matching problems with applications to structured text databases. PhD thesis, University of Helsinki, Finland, 1992.

    Google Scholar 

  12. E. L. Lawler and D. W. Wood. Branch and bound methods: A survey. Operations Research, 14:699–719, 1966.

    Article  MATH  MathSciNet  Google Scholar 

  13. S. Vialette. Aspects algorithmiques de la pr’ediction des structures secondaires d’ARN. PhD thesis, Universit’e Denis Diderot, Paris, France, 2001. (in french).

    Google Scholar 

  14. D. B. West and D. B. Shmoys. Recognizing graphs with fixed interval number is NP-complete. Discrete Appl. Math., 8:295–305, 1984.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vialette, S. (2002). Pattern Matching Problems over 2-Interval Sets. In: Apostolico, A., Takeda, M. (eds) Combinatorial Pattern Matching. CPM 2002. Lecture Notes in Computer Science, vol 2373. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45452-7_6

Download citation

  • DOI: https://doi.org/10.1007/3-540-45452-7_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43862-5

  • Online ISBN: 978-3-540-45452-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics