Nothing Special   »   [go: up one dir, main page]

Skip to main content

Automatic Performance Analysis of Master/Worker PVM Applications with Kpi

  • Conference paper
  • First Online:
Recent Advances in Parallel Virtual Machine and Message Passing Interface (EuroPVM/MPI 2000)

Abstract

PVM parallel programming model provides a convenient methodology of creating dynamic master/worker applications. In this paper, we introduce the benefits from the use of KappaPi tool for automatic analysis of master/worker applications. First, by the automatic detection of the master/worker paradigm in the application. And second, by the performance analysis of the application focusing on the performance bottlenecks and the limitations of this master/worker collaboration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pancake, C. M., Simmons, M. L., Yan J. C: Perfonnance Evaluation Tools for Parallel and Distributed Systems. IEEE Computer, November 1995, vol. 28, p. 16–19.

    Google Scholar 

  2. Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R. and Sunderam, V., PVM: Parallel Virtual Machine, A User’s Guide and Tutorial for Network Parallel Computing. MIT Press, Cambridge, MA, 1994.

    Google Scholar 

  3. Gropp W., Nitzberg B., Lusk E., Snir M.: Mpi: The Complete Reference: The Mpi Core/the Mpi Extensions. Scientific and Engineering Computation Series. The MIT Press. Cambridge, MA, 1998.

    Google Scholar 

  4. Hollingsworth, J. K., Miller, B, P. Dynamic Control of Performance Monitoring on Large Scale Parallel Systems. International Conference on Supercomputing (Tokyo, July 19–23, 1993).

    Google Scholar 

  5. Yan, Y. C, Sarukhai, S. R: Analyzing palallel program performance using normalized performance indices and trace transformation techniques. Parallel Computing 22 (1996) 1215–1237.

    Article  MATH  Google Scholar 

  6. Fahringer T., Automatic Performance Prediction of Parallel Programs. Kluwer Academic Publishers. 1996.

    Google Scholar 

  7. Espinosa, A., Margalef, T. and Luque, E., Automatic Performance Evaluation of Parallel Programs. Proc. of the 6th EUROMICRO Workshop on Parallel and Distributed Processing, pp. 4349. IEEE CS. 1998. http://www.caos.uab.es/kpi.html

  8. Espinosa, A., Margalef, T. and Luque E., Relating the execution behaviour with the structure of the application. LNCS 1697. Recent Advances in Parallel Virtual Machine and Message Passing Interface. Springer 1999.

    Chapter  Google Scholar 

  9. Andre, J.C.S. and Viegas, D.X., “A Strategy to Model the Average Fireline Movement of a light-to-medium Intensity Surface Forest Fire”, Proc. of the 2nd International Conference on Forest Fire Research, pp. 221–242. Coimbra, Portugal, 1994.

    Google Scholar 

  10. Jorba, J., Margalef, T., Luque, E., Andre, J., Viegas, D. X. “Application of Parallel Computing to the Simulation of Forest Fire Propagation”. Proc. 3td International Conference in Forest Fire Propagation, Vol. 1, pp. 891–900, Luso, Nov. 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Espinosa, A., Margalef, T., Luque, E. (2000). Automatic Performance Analysis of Master/Worker PVM Applications with Kpi. In: Dongarra, J., Kacsuk, P., Podhorszki, N. (eds) Recent Advances in Parallel Virtual Machine and Message Passing Interface. EuroPVM/MPI 2000. Lecture Notes in Computer Science, vol 1908. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45255-9_10

Download citation

  • DOI: https://doi.org/10.1007/3-540-45255-9_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41010-2

  • Online ISBN: 978-3-540-45255-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics