Nothing Special   »   [go: up one dir, main page]

Skip to main content

Dynamic Maximum Tree Depth

A Simple Technique for Avoiding Bloat in Tree-Based GP

  • Conference paper
  • First Online:
Genetic and Evolutionary Computation — GECCO 2003 (GECCO 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2724))

Included in the following conference series:

Abstract

We present a technique, designated as dynamic maximum tree depth, for avoiding excessive growth of tree-based GP individuals during the evolutionary process. This technique introduces a dynamic tree depth limit, very similar to the Koza-style strict limit except in two aspects: it is initially set with a low value; it is increased when needed to accommodate an individual that is deeper than the limit but is better than any other individual found during the run. The results show that the dynamic maximum tree depth technique efficiently avoids the growth of trees beyond the necessary size to solve the problem, maintaining the ability to find individuals with good fitness values. When compared to lexicographic parsimony pressure, dynamic maximum tree depth proves to be significantly superior. When both techniques are coupled, the results are even better.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic programming — an introduction, San Francisco, CA. Morgan Kaufmann (1998)

    MATH  Google Scholar 

  2. Gathercole, C., Ross, P.: An adverse interaction between crossover and restricted tree depth in genetic programming. In Koza, J.R., Goldberg, D.E., Fogel, D.B., Riolo, R.L., editors, Proceedings of GP’96, Cambridge, MA. MIT Press (1996) 291–296

    Google Scholar 

  3. Koza, J.R.: Genetic programming — on the programming of computers by means of natural selection, Cambridge, MA. MIT Press (1992)

    MATH  Google Scholar 

  4. Langdon, W.B., Poli, R.: An analysis of the MAX problem in genetic programming. In Koza, J.R., Deb, K., Dorigo, M., Fogel, D.B., Garzon, M., Iba, H., Riolo, R.L., editors, Proceedings of GP’97, San Francisco, CA. Morgan Kaufman (1997) 222–230

    Google Scholar 

  5. Langdon, W.B.: Genetic Programming + Data Structures = Automatic Programming!, Boston, MA. Kluwer (1998)

    Google Scholar 

  6. Langdon, W.B.: Size fair and homologous tree crossovers for tree genetic programming. Genetic Programming and Evolvable Machines, 1 (2000) 95–119

    Article  MATH  Google Scholar 

  7. Luke, S., Panait, L.: Lexicographic parsimony pressure. In Langdon, W.B., Cantú-Paz, E., Mathias, K., Roy, R., Davis, D., Poli, R. Balakrishnan, K., Honavar, V., Rudolph, G., Wegener, J., Bull, L., Potter, M.A., Schultz, A.C., Miller, J.F., Burke, E., Jonoska, N., editors, Proceedings of GECCO-2002, San Francisco, CA. Morgan Kaufmann (2002) 829–836

    Google Scholar 

  8. Silva, S.: GPLAB — a genetic programming toolbox for MATLAB. (2003) http://www.itqb.unl.pt:1111/gplab/

    Google Scholar 

  9. Soule, T.: Code growth in genetic programming. PhD thesis, University of Idaho (1998)

    Google Scholar 

  10. Soule, T.: Exons and code growth in genetic programming. In Foster, J.A., Lutton, E., Miller, J., Ryan, C., Tettamanzi, A.G.B., editors, Proceedings of EuroGP-2002, Berlin. Springer (2002) 142–151

    Google Scholar 

  11. Soule, T., Foster, J.A.: Effects of code growth and parsimony pressure on populations in genetic programming. Evolutionary Computation, 6(4) (1999) 293–309

    Article  Google Scholar 

  12. Soule, T., Heckendorn, R.B.: An analysis of the causes of code growth in genetic programming. Genetic Programming and Evolvable Machines, 3 (2002) 283–309

    Article  MATH  Google Scholar 

  13. The MathWorks. (2003) http://www.mathworks.com

    Google Scholar 

  14. Van Belle, T., Ackley, D.H.: Uniform subtree mutation. In Foster, J.A., Lutton, E., Miller, J., Ryan, C., Tettamanzi, A.G.B., editors, Proceedings of EuroGP-2002, Berlin. Springer (2002) 152–161

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Silva, S., Almeida, J. (2003). Dynamic Maximum Tree Depth. In: Cantú-Paz, E., et al. Genetic and Evolutionary Computation — GECCO 2003. GECCO 2003. Lecture Notes in Computer Science, vol 2724. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45110-2_69

Download citation

  • DOI: https://doi.org/10.1007/3-540-45110-2_69

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40603-7

  • Online ISBN: 978-3-540-45110-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics