Abstract
We present a technique, designated as dynamic maximum tree depth, for avoiding excessive growth of tree-based GP individuals during the evolutionary process. This technique introduces a dynamic tree depth limit, very similar to the Koza-style strict limit except in two aspects: it is initially set with a low value; it is increased when needed to accommodate an individual that is deeper than the limit but is better than any other individual found during the run. The results show that the dynamic maximum tree depth technique efficiently avoids the growth of trees beyond the necessary size to solve the problem, maintaining the ability to find individuals with good fitness values. When compared to lexicographic parsimony pressure, dynamic maximum tree depth proves to be significantly superior. When both techniques are coupled, the results are even better.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic programming — an introduction, San Francisco, CA. Morgan Kaufmann (1998)
Gathercole, C., Ross, P.: An adverse interaction between crossover and restricted tree depth in genetic programming. In Koza, J.R., Goldberg, D.E., Fogel, D.B., Riolo, R.L., editors, Proceedings of GP’96, Cambridge, MA. MIT Press (1996) 291–296
Koza, J.R.: Genetic programming — on the programming of computers by means of natural selection, Cambridge, MA. MIT Press (1992)
Langdon, W.B., Poli, R.: An analysis of the MAX problem in genetic programming. In Koza, J.R., Deb, K., Dorigo, M., Fogel, D.B., Garzon, M., Iba, H., Riolo, R.L., editors, Proceedings of GP’97, San Francisco, CA. Morgan Kaufman (1997) 222–230
Langdon, W.B.: Genetic Programming + Data Structures = Automatic Programming!, Boston, MA. Kluwer (1998)
Langdon, W.B.: Size fair and homologous tree crossovers for tree genetic programming. Genetic Programming and Evolvable Machines, 1 (2000) 95–119
Luke, S., Panait, L.: Lexicographic parsimony pressure. In Langdon, W.B., Cantú-Paz, E., Mathias, K., Roy, R., Davis, D., Poli, R. Balakrishnan, K., Honavar, V., Rudolph, G., Wegener, J., Bull, L., Potter, M.A., Schultz, A.C., Miller, J.F., Burke, E., Jonoska, N., editors, Proceedings of GECCO-2002, San Francisco, CA. Morgan Kaufmann (2002) 829–836
Silva, S.: GPLAB — a genetic programming toolbox for MATLAB. (2003) http://www.itqb.unl.pt:1111/gplab/
Soule, T.: Code growth in genetic programming. PhD thesis, University of Idaho (1998)
Soule, T.: Exons and code growth in genetic programming. In Foster, J.A., Lutton, E., Miller, J., Ryan, C., Tettamanzi, A.G.B., editors, Proceedings of EuroGP-2002, Berlin. Springer (2002) 142–151
Soule, T., Foster, J.A.: Effects of code growth and parsimony pressure on populations in genetic programming. Evolutionary Computation, 6(4) (1999) 293–309
Soule, T., Heckendorn, R.B.: An analysis of the causes of code growth in genetic programming. Genetic Programming and Evolvable Machines, 3 (2002) 283–309
The MathWorks. (2003) http://www.mathworks.com
Van Belle, T., Ackley, D.H.: Uniform subtree mutation. In Foster, J.A., Lutton, E., Miller, J., Ryan, C., Tettamanzi, A.G.B., editors, Proceedings of EuroGP-2002, Berlin. Springer (2002) 152–161
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2003 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Silva, S., Almeida, J. (2003). Dynamic Maximum Tree Depth. In: Cantú-Paz, E., et al. Genetic and Evolutionary Computation — GECCO 2003. GECCO 2003. Lecture Notes in Computer Science, vol 2724. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45110-2_69
Download citation
DOI: https://doi.org/10.1007/3-540-45110-2_69
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-40603-7
Online ISBN: 978-3-540-45110-5
eBook Packages: Springer Book Archive