Nothing Special   »   [go: up one dir, main page]

Skip to main content

On Minimizing Average Weighted Completion Time: A PTAS for Scheduling General Multiprocessor Tasks

  • Conference paper
  • First Online:
Fundamentals of Computation Theory (FCT 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2138))

Included in the following conference series:

Abstract

We study the problem of scheduling n independent general multiprocessor tasks on a fixed number of processors, where the objective is to compute a non-preemptive schedule minimizing the average weighted completion time. For each task, its execution time is given as a function of the subset of processors assigned to the task. We propose here a polynomial-time approximation scheme for the problem that computes a (1 + ε)-approximate solution in O(n log n) time for any fixed ε > 0 accuracy. This provides a generalization and integration of some recent polynomial-time approximation schemes for scheduling jobs on unrelated machines [1,18] and multiprocessor tasks on dedicated processors [2], respectively, with the average weighted completion time objective, since the latter models are included as special cases in our problem.

Supported in part by DFG - Graduiertenkolleg “Effiziente Algorithmen und Mehrskalenmethoden” and by EU project APPOL “Approximation and On-line Algorithms”, IST-1999-14084

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. F. Afrati, E. Bampis, C. Chekuri, D. Karger, C. Kenyon, S. Khanna, I. Millis, M. Queyranne, M. Skutella, C. Stein, and M. Sviridenko, Approximation schemes for minimizing average weighted completion time with release dates, Proceedings 40th IEEE Symposium on Foundations of Computer Science (1999), 32–43.

    Google Scholar 

  2. F. Afrati, E. Bampis, A. V. Fishkin, K. Jansen, C. Kenyon, Scheduling to minimize the average completion time of dedicated tasks, Proceedings 20th Conference on Foundations of Software Technology and Theoretical Computer Science, LNCS 1974, Springer Verlag (2000), 454–464.

    Google Scholar 

  3. A. K. Amoura, E. Bampis, C. Kenyon, and Y. Manoussakis, Scheduling independent multiprocessor tasks, Proceedings 5th European Symposium on Algorithms, LNCS 1284, Springer Verlag (1997), 1–12.

    Google Scholar 

  4. F. Afrati, E. Bampis, C. Kenyon and I. Milis, A PTAS for the average weighted completion time problem on unrelated machines, Journal of Scheduling 3 (2000), 323–332.

    Article  MATH  MathSciNet  Google Scholar 

  5. A. Bar-Noy, M. Bellare, M. M. Halldórsson, H. Shachnai, and T. Tamir, On chromatic sums and distributed resource allocation, Information and Computation 140 (1998), 183–202.

    Article  MATH  MathSciNet  Google Scholar 

  6. A. Bar-Noy and M. M. Halldórsson and G. Kortsarz and R. Salman and H. Shachnai, Sum multicoloring of graphs, Proceedings 7th European Symposium on Algorithms, LNCS 1643, Springer Verlag (1999), 390–401.

    Google Scholar 

  7. J. L. Bruno, E. G. Coffman, Jr., R. Sethi, Algorithms for minimizing mean flow time, Proceedings of the IFIP Congress, North-Holland, Amsterdam, (1974), 504–510.

    Google Scholar 

  8. X. Cai, C.-Y. Lee, and C.-L. Li, Minimizing total completion time in two-processor task systems with prespecified processor allocation, Naval Research Logistics 45 (1998), 231–242.

    Article  MATH  MathSciNet  Google Scholar 

  9. S. Chakrabarti, C. A. Philips, A. S. Schulz, D. B. Shmoys, C. Stein, and J. Wein, Improved scheduling algorithms for minsum criteria, Proceedings 23rd International Colloquium on Automata, Languages and Programming, LNCS 1099, Springer Verlag (1996), 646–657.

    Google Scholar 

  10. J. Chen and A. Miranda, A polynomial time approximation scheme for general multiprocessor job scheduling, Proceedings 31st ACM Symposium on the Theory of Computing (1999), 418–427.

    Google Scholar 

  11. J. Du and J. Leung, Complexity of scheduling parallel task systems, SIAM Journal on Discrete Mathematics 2 (1989), 473–487.

    Article  MATH  MathSciNet  Google Scholar 

  12. U. Feige and J. Kilian, Zero-knowledge and the chromatic number, in Journal of Computer and System Science 57(2) (1998), 187–199.

    Article  MATH  MathSciNet  Google Scholar 

  13. A. V. Fishkin, K. Jansen, L. Porkolab, On minimizing average weighted completion time of multiprocessor tasks with release dates, to appear on ICALP01.

    Google Scholar 

  14. M. R. Garey and D. S. Johnson, Computers and intractability: A guide to the theory of NP-completeness, Freeman, San Francisco, CA, 1979.

    MATH  Google Scholar 

  15. L. A. Hall, A. S. Schulz, D. B. Shmoys, and J. Wein, Scheduling to minimize average time: Offline and online algorithm, Mathematics of Operation Research 22 (1997), 513–544.

    Article  MATH  MathSciNet  Google Scholar 

  16. J. A. Hoogeveen, S. L. Van de Velde, and B. Veltman, Complexity of scheduling multiprocessor tasks with prespecified processor allocations, Discrete Applied Mathematics 55 (1994), 259–272.

    Article  MATH  MathSciNet  Google Scholar 

  17. K. Jansen and L. Porkolab, General multiprocessor task scheduling: approximate solution in linear time, Proceedings 6th International Workshop on Algorithms and Data Structures, LNCS 1663, Springer Verlag (1999), 110–121.

    Chapter  Google Scholar 

  18. M. Skutella and G. J. Woeginger, A PTAS for minimizing the weighted sum of job completion times on parallel machines, Proceedings 31st ACM Symposium on Theory of Computing (1999), 400–407.

    Google Scholar 

  19. W. E. Smith, Various optimizers for single-stage production, Naval Research Logistic Quarterly 3 (1956), 59–66.

    Article  Google Scholar 

  20. J. Turek, W. Ludwig, J. Wolf, and P. Yu, Scheduling parallel tasks to minimize average response times, Proceedings 5th ACM-SIAM Symposium on Discrete Algorithms (1994), 112–121.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fishkin, A.V., Jansen, K., Porkolab, L. (2001). On Minimizing Average Weighted Completion Time: A PTAS for Scheduling General Multiprocessor Tasks. In: Freivalds, R. (eds) Fundamentals of Computation Theory. FCT 2001. Lecture Notes in Computer Science, vol 2138. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44669-9_56

Download citation

  • DOI: https://doi.org/10.1007/3-540-44669-9_56

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42487-1

  • Online ISBN: 978-3-540-44669-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics