Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Fixed Structure Learning Automaton Micro-aggregation Technique for Secure Statistical Databases

  • Conference paper
Privacy in Statistical Databases (PSD 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4302))

Included in the following conference series:

Abstract

We consider the problem of securing statistical databases and, more specifically, the micro-aggregation technique (MAT), which coalesces the individual records in the micro-data file into groups or classes, and on being queried, reports, for the all individual values, the aggregated means of the corresponding group. This problem is known to be NP-hard and has been tackled using many heuristic solutions. In this paper we present the first reported Learning Automaton (LA) based solution to the MAT. The LA modifies a fixed-structure solution to the Equi-Partitioning Problem (EPP) to solve the micro-aggregation problem. The scheme has been implemented, rigorously tested and evaluated for different real and simulated data sets. The results clearly demonstrate the applicability of LA to the micro-aggregation problem, and to yield a solution that obtains a lower information loss when compared to the best available heuristic methods for micro-aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adam, N., Wortmann, J.: Security-Control Methods for Statistical Databases: A comparative Study. ACM Computing Surveys 21(4), 515–556 (1989)

    Article  Google Scholar 

  2. Baeyens, Y., Defays, D.: Estimation of Variance Loss Following Microaggregation by the Individual Ranking Method. In: Proceedings of Statistical Data Protection 1998, pp. 101–108. Office for Official Publications of the European Communities, Luxembourg (1999)

    Google Scholar 

  3. Domingo-Ferrer, J., Mateo-Sanz, J.: Practical Data-Oriented Microaggregation for Statistical Disclosure Control. IEEE Trans. on Know. and Data Eng. 14(1), 189–201 (2002)

    Article  Google Scholar 

  4. Mateo-Sanz, J., Domingo-Ferrer, J.: A Method for Data-Oriented Multivariate Microaggregation. In: Proceedings of Statistical Data Protection 1998, pp. 89–99. Office for Official Publications of the European Communities, Luxembourg (1999)

    Google Scholar 

  5. Hansen, S., Mukherjee, S.: A Polynomial Algorithm for Univariate Optimal Microaggregation. IEEE Trans. on Know. and Data Eng. 15(4), 1043–1044 (2003)

    Article  Google Scholar 

  6. Laszlo, M., Mukherjee, S.: Minimum Spanning Tree Partitioning Algorithm for Microaggregation. IEEE Trans. on Know. and Data Eng. 17(7), 902–911 (2005)

    Article  Google Scholar 

  7. Domingo-Ferrer, J., Torra, V.: Ordinal, Continuous and Heterogeneous k-Anonymity Through Microaggregation. Data Mining and Knowledge Discovery 11(2), 195–212 (2005)

    Article  MathSciNet  Google Scholar 

  8. Fayyoumi, E., Oommen, B. (Using Learning Automaton to Micro-Aggregate the Continuous Micro-data File) Unabridged Version of This Paper

    Google Scholar 

  9. Defays, D., Anwar, N.: Micro-Aggregation: A Generic Method. In: Proceedings of the 2nd International Symposium on Statistical Confidentiality, pp. 69–78. Office for Official Publications of the European Communities, Luxembourg (1995)

    Google Scholar 

  10. Defays, D., Nanopoulos, P.: Panels of Enterprises and Confidentiality: the Small Aggregates Method. In: Proceedings of 92 Symposium on Design and Analysis of Longitudinal Surveys, pp. 195–204. Statistics Canada, Ottawa (1993)

    Google Scholar 

  11. Mateo-Sanz, J., Domingo-Ferrer, J.: A Comparative Study of Microaggregation Methods. Questiio 22(3), 511–526 (1998)

    MATH  Google Scholar 

  12. Solanas, A., Martínez-Ballesté, A.: V-MDAV: A Multivariate Microaggregation With Variable Group Size. In: 17th COMPSTAT Symposium of the IASC (2006)

    Google Scholar 

  13. Domingo-Ferrer, J., Mateo-Sanz, J.: On Resampling for Statistical Confidentiality in Contingency Tables. Computers and Mathematics with Applications 38, 13–32 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Li, Y., Zhu, S., Wang, L., Jajodia, S.: A privacy-enhanced microaggregation method. In: Eiter, T., Schewe, K.-D. (eds.) FoIKS 2002. LNCS, vol. 2284, pp. 148–159. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  15. Fayyoumi, E., Oommen, B.: On Optimizing the k-Ward Micro-Aggregation Technique for Secure Statistical Databases (In: 11th Australasian Conference on Information Security and Privacy Proceeding)

    Google Scholar 

  16. Hundepool, A., Wetering, A., Ramaswamy, R., Franconi, L., Capobianchi, A., Wolf, P., Domingo-Ferrer, J., Torra, V., Brand, R., Giessing, S.: M-ARGUS Version 4.0 Software and User’s Manual (2004)

    Google Scholar 

  17. Gale, W., Das, S., Yu, C.: Improvements to an Algorithm for Equipartitioning. IEEE Trans. Comput. 39(5), 706–710 (1990)

    Article  Google Scholar 

  18. Oommen, B., Ma, D.: Deterministic Learning Automata Solutions to the Equipartitioning Problem. IEEE Transction Computer 37(1), 2–13 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  19. Solanas, A., Martínez-Ballesté, A., Domingo-Ferrer, J., Mateo-Sanz, J.: A 2d-Tree-Based Blocking Method for Microaggregating Very Large Data Sets. In: The First International Conference on Availability,Reliability and Security. The International Dependability Conference Bridging Theory and Practice (2006)

    Google Scholar 

  20. Domingo-Ferrer, J., Torra, V.: A Quantitative Comparison of Disclosure Control Methods for Microdata. In: Doyle, P., Lane, J., Theeuwes, J., Zayatz, L. (eds.) Confidentiality, Disclosure and Data Access: Theory and Practical Applications for Statistical Agencies, Amesterdam, North-Holland, pp. 113–134. Springer, Berlin (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fayyoumi, E., Oommen, B.J. (2006). A Fixed Structure Learning Automaton Micro-aggregation Technique for Secure Statistical Databases. In: Domingo-Ferrer, J., Franconi, L. (eds) Privacy in Statistical Databases. PSD 2006. Lecture Notes in Computer Science, vol 4302. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11930242_11

Download citation

  • DOI: https://doi.org/10.1007/11930242_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49330-3

  • Online ISBN: 978-3-540-49332-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics