Abstract
One of the main research topics in DNA computing is associated with the design of information encoding single or double stranded DNA strands that are “suitable” for computation. Double stranded or partially double stranded DNA occurs as a result of binding between complementary DNA single strands (A is complementary to T and C is complementary to G). This paper continues the study of the algebraic properties of DNA word sets that ensure that certain undesirable bonds do not occur. We formalize and investigate such properties of sets of sequences, e.g., where no complement of a sequence is a prefix or suffix of another sequence or no complement of a concatenation of n sequences is a subword of the concatenation of n + 1 sequences. The sets of code words that satisfy the above properties are called θ – prefix, θ-suffix and θ-intercode respectively, where θ is the formalization of the Watson-Crick complementarity. Lastly we develop certain methods of constructing such sets of DNA words with good properties and compute their informational entropy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adler, R.L., Coppersmith, D., Hassner, M.: Algorithms for sliding block codes -an application of symbolic dynamics to information theory. IEEE Trans. Inform. Theory 29, 5–22 (1983)
Baum, E.B.: DNA Sequences useful for computation (unpublished article, 1996)
Braich, R.S., Chelyapov, N., Johnson, C., Rothemund, P.W.K., Adleman, L.: Solution of a 20-variable 3-SAT problem on a DNA computer Science. Science 19 296(5567), 499–502 (2002)
Berstel, J., Perrin, D.: Theory of Codes. Academis Press, Inc., Orlando Florida (1985)
Deaton, R., Chen, J., Bi, H., Garzon, M., Rubin, H., Wood, D.F.: A PCR based protocol for In vitro selection of non-crosshybridizing oligonucleotides. In: Hagiya, M., Ohuchi, A. (eds.) DNA 2002. LNCS, vol. 2568, pp. 196–204. Springer, Heidelberg (2003)
Deaton, R., Chen, J., Garzon, M., Kim, J., Wood, D., Bi, H., Carpenter, D., Wang, Y.: Characterization of Non-Crosshybridizing DNA Oligonucleotides Manufactured in Vitro. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA computing: Preliminary Proceedings of the 10th International Meeting on DNA Based Computers, June 7-10, pp. 132–141 (2004)
Deaton, R., et al.: A DNA based implementation of an evolutionary search for good encodings for DNA computation. In: Proc. IEEE Conference on Evolutionary Computation ICEC 1997, pp. 267–271 (1997)
Faulhammer, D., Cukras, A.R., Lipton, R.J., Landweber, L.F.: Molecular Computation: RNA solutions to chess problems. In: Proceedings of the National Academy of Sciences, USA, vol. 97(4), pp. 1385–1389 (2000)
Garzon, M., Deaton, R., Reanult, D.: Virtual test tubes: a new methodology for computing. In: Coruna, A. (ed.) Proc. 7th. Int. Symposium on String Processing and Information retrieval, Spain, pp. 116–121. IEEE Computing Society Press, Los Alamitos (2000)
Head, T.: Formal language theory and DNA: an analysis of the generative capacity of specific recombinant behaviors. Bull. Math. Biology 49, 737–759 (1987)
Head, T., Paun, G., Pixton, D.: Language theory and molecular genetics. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of formal languages, vol. II, pp. 295–358. Springer, Heidelberg (1997)
Hussini, S., Kari, L., Konstantinidis, S.: Coding Properties of DNA Languages. In: Jonoska, N., Seeman, N.C. (eds.) DNA 2001. LNCS, vol. 2340, pp. 57–69. Springer, Heidelberg (2002)
Jonoska, N., Kephart, D., Mahalingam, K.: Generating DNA code words. Congressus Numernatium 156, 99–110 (2002)
Jonoska, N., Mahalingam, K., Chen, J.: Involution Codes: With Application to DNA Coded Languages. Natural Computing 4(2), 141–162 (2005)
Kari, L.: On insertion and deletion on formal languages, University of Turku, Finland. Doctoral Dissertation in Mathematics
Kari, L., Konstantinidis, S., Losseva, E., Wozniak, G.: Sticky-free and overhang-free DNA languages. Acta Informatica 40, 119–157 (2003)
Kari, L., Konstantinidis, S., Sosik, P.: Bond-free Languages: Formalizations, Maximality and Construction Methods. In: Preliminary Proceedings of DNA 10, June 7-10, pp. 16–25 (2004)
Kari, L., Konstantinidis, S., Sosik, P.: Preventing Undesirable Bonds between DNA Codewords. In: Preliminary Proceedings of DNA 10, June 7-10, pp. 375–384 (2004)
Keane, M.S.: Ergodic theory an subshifts of finite type. In: Edford, T., et al. (eds.) Ergodic theory, symbolic dynamics and hyperbolic spaces, pp. 35–70. Oxford Univ. Press, Oxford (1991)
Kephart, D., Lefevre, J.: Codegen: The generation and testing of DNA code words. In: Proceedings of IEEE Congress on Evolutionary Computation, June 2004, pp. 1865–1873 (2004)
Leupold, P.: Partial Words for DNA Coding. In: Preliminary Proceedings of DNA 10, June 7-10, pp. 26–35 (2004)
Li, Z.: Construct DNA code words using backtrack algorithm (preprint)
Lind, D., Marcus, B.: An introduction to Symbolic Dynamics and Coding, Cambridge University Press, Inc. Cambridge United Kingdom (1999)
Liu, Q., et al.: DNA computing on surfaces. Nature 403, 175–179 (2000)
Marathe, A., Condon, A.E., Corn, R.M.: On combinatorial word design. In: Preproceedings of the 5th International Meeting on DNA Based Computers, Boston, pp. 75–88 (1999)
Shyr, H.J.: Free Monoids and Languages. Hon Min Book Company (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kari, L., Mahalingam, K. (2006). DNA Codes and Their Properties. In: Mao, C., Yokomori, T. (eds) DNA Computing. DNA 2006. Lecture Notes in Computer Science, vol 4287. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11925903_10
Download citation
DOI: https://doi.org/10.1007/11925903_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-49024-1
Online ISBN: 978-3-540-68423-7
eBook Packages: Computer ScienceComputer Science (R0)