Nothing Special   »   [go: up one dir, main page]

Skip to main content

Bisimulation Congruences in the Calculus of Looping Sequences

  • Conference paper
Theoretical Aspects of Computing - ICTAC 2006 (ICTAC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4281))

Included in the following conference series:

Abstract

The Calculus of Looping Sequences (CLS) is a calculus suitable to describe biological systems and their evolution. CLS terms are constructed by starting from basic constituents and composing them by means of operators of concatenation, looping, containment and parallel composition. CLS terms can be transformed by applying rewrite rules. We give a labeled transition semantics for CLS by using, as labels, contexts in which rules can be applied. We define bisimulation relations that are congruences with respect to the operators on terms, and we show an application of CLS to the modeling of a biological system and we use bisimulations to reason about properties of the described system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alur, R., Belta, C., Ivančić, F., Kumar, V., Mintz, M., Pappas, G.J., Rubin, H., Schug, J.: Hybrid Modeling and Simulation of Biomolecular Networks. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 19–32. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  2. Barbuti, R., Cataudella, S., Maggiolo-Schettini, A., Milazzo, P., Troina, A.: A Probabilistic Model for Molecular Systems. Fundamenta Informaticae 67, 13–27 (2005)

    MathSciNet  MATH  Google Scholar 

  3. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Troina, A.: A Calculus of Looping Sequences for Modelling Microbiological Systems. Fundamenta Informaticae 72, 1–15 (2006)

    MathSciNet  Google Scholar 

  4. Cardelli, L.: Brane Calculi. Interactions of Biological Membranes. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–278. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Chabrier-Rivier, N., Chiaverini, M., Danos, V., Fages, F., Schachter, V.: Modeling and Querying Biomolecular Interaction Networks. Theoretical Computer Science 325(1), 25–44 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Curti, M., Degano, P., Priami, C., Baldari, C.T.: Modelling Biochemical Pathways through Enhanced pi-calculus. Theoretical Computer Science 325(1), 111–140 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Danos, V., Laneve, C.: Formal Molecular Biology. Theoretical Computer Science 325(1), 69–110 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Leifer, J.J., Milner, R.: Deriving Bisimulation Congruences for Reactive Systems. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 243–258. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  9. Matsuno, H., Doi, A., Nagasaki, M., Miyano, S.: Hybrid Petri Net Representation of Gene Regulatory Network. In: Pacific Symposium on Biocomputing, pp. 341–352. World Scientific Press, Singapore (2000)

    Google Scholar 

  10. Priami, C., Quaglia, P.: Beta Binders for Biological Interactions. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 20–33. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. Regev, A., Panina, E.M., Silverman, W., Cardelli, L., Shapiro, E.: BioAmbients: An Abstraction for Biological Compartments. Theoretical Computer Science 325(1), 141–167 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Regev, A., Silverman, W., Shapiro, E.Y.: Representation and Simulation of Biochemical Processes Using the pi-calculus Process Algebra. In: Pacific Symposium on Biocomputing, pp. 459–470. World Scientific Press, Singapore (2001)

    Google Scholar 

  13. Sewell, P.: From Rewrite Rules to Bisimulation Congruences. Theoretical Computer Science 274, 183–230 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Troina, A. (2006). Bisimulation Congruences in the Calculus of Looping Sequences. In: Barkaoui, K., Cavalcanti, A., Cerone, A. (eds) Theoretical Aspects of Computing - ICTAC 2006. ICTAC 2006. Lecture Notes in Computer Science, vol 4281. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11921240_7

Download citation

  • DOI: https://doi.org/10.1007/11921240_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-48815-6

  • Online ISBN: 978-3-540-48816-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics