Abstract
The Calculus of Looping Sequences (CLS) is a calculus suitable to describe biological systems and their evolution. CLS terms are constructed by starting from basic constituents and composing them by means of operators of concatenation, looping, containment and parallel composition. CLS terms can be transformed by applying rewrite rules. We give a labeled transition semantics for CLS by using, as labels, contexts in which rules can be applied. We define bisimulation relations that are congruences with respect to the operators on terms, and we show an application of CLS to the modeling of a biological system and we use bisimulations to reason about properties of the described system.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alur, R., Belta, C., Ivančić, F., Kumar, V., Mintz, M., Pappas, G.J., Rubin, H., Schug, J.: Hybrid Modeling and Simulation of Biomolecular Networks. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 19–32. Springer, Heidelberg (2001)
Barbuti, R., Cataudella, S., Maggiolo-Schettini, A., Milazzo, P., Troina, A.: A Probabilistic Model for Molecular Systems. Fundamenta Informaticae 67, 13–27 (2005)
Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Troina, A.: A Calculus of Looping Sequences for Modelling Microbiological Systems. Fundamenta Informaticae 72, 1–15 (2006)
Cardelli, L.: Brane Calculi. Interactions of Biological Membranes. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–278. Springer, Heidelberg (2005)
Chabrier-Rivier, N., Chiaverini, M., Danos, V., Fages, F., Schachter, V.: Modeling and Querying Biomolecular Interaction Networks. Theoretical Computer Science 325(1), 25–44 (2004)
Curti, M., Degano, P., Priami, C., Baldari, C.T.: Modelling Biochemical Pathways through Enhanced pi-calculus. Theoretical Computer Science 325(1), 111–140 (2004)
Danos, V., Laneve, C.: Formal Molecular Biology. Theoretical Computer Science 325(1), 69–110 (2004)
Leifer, J.J., Milner, R.: Deriving Bisimulation Congruences for Reactive Systems. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 243–258. Springer, Heidelberg (2000)
Matsuno, H., Doi, A., Nagasaki, M., Miyano, S.: Hybrid Petri Net Representation of Gene Regulatory Network. In: Pacific Symposium on Biocomputing, pp. 341–352. World Scientific Press, Singapore (2000)
Priami, C., Quaglia, P.: Beta Binders for Biological Interactions. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 20–33. Springer, Heidelberg (2005)
Regev, A., Panina, E.M., Silverman, W., Cardelli, L., Shapiro, E.: BioAmbients: An Abstraction for Biological Compartments. Theoretical Computer Science 325(1), 141–167 (2004)
Regev, A., Silverman, W., Shapiro, E.Y.: Representation and Simulation of Biochemical Processes Using the pi-calculus Process Algebra. In: Pacific Symposium on Biocomputing, pp. 459–470. World Scientific Press, Singapore (2001)
Sewell, P.: From Rewrite Rules to Bisimulation Congruences. Theoretical Computer Science 274, 183–230 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Troina, A. (2006). Bisimulation Congruences in the Calculus of Looping Sequences. In: Barkaoui, K., Cavalcanti, A., Cerone, A. (eds) Theoretical Aspects of Computing - ICTAC 2006. ICTAC 2006. Lecture Notes in Computer Science, vol 4281. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11921240_7
Download citation
DOI: https://doi.org/10.1007/11921240_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-48815-6
Online ISBN: 978-3-540-48816-3
eBook Packages: Computer ScienceComputer Science (R0)