Nothing Special   »   [go: up one dir, main page]

Skip to main content

The Characterization of 2n-Periodic Binary Sequences with Fixed 1-Error Linear Complexity

  • Conference paper
Sequences and Their Applications – SETA 2006 (SETA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4086))

Included in the following conference series:

Abstract

The linear complexity of sequences is one of the important security measures for stream cipher systems. Recently, using fast algorithms for computing the linear complexity and the k-error linear complexity of 2n-periodic binary sequences, Meidl determined the counting function and expected value for the 1-error linear complexity of 2n-periodic binary sequences. In this paper, we study the linear complexity and the 1-error linear complexity of 2n-periodic binary sequences. Some interesting properties of the linear complexity and the 1-error linear complexity of 2n-periodic binary sequences are obtained. Using these properties, we characterize the 2n-periodic binary sequences with fixed 1-error linear complexity. Along the way, we obtain a new approach to derive the counting function for the 1-error linear complexity of 2n-periodic binary sequences. Finally, we give new fast algorithms for computing the 1-error linear complexity and locating the error positions for 2n-periodic binary sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cusick, T.W., Ding, C., Renvall, A.: Stream Ciphers and Number Theory. North-Holland Mathematical Library, vol. 55. Elsevier, Amsterdam (1998)

    MATH  Google Scholar 

  2. Ding, C., Shan, W., Xiao, G.: The Stability Theory of Stream Ciphers. LNCS, vol. 561. Springer, Heidelberg (1991)

    MATH  Google Scholar 

  3. Games, R.A., Chan, A.H.: A fast algorithm for determining the complexity of a binary sequence with period 2n. IEEE Trans. Inform. Theory 29, 144–146 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  4. Kaida, T., Uehara, S., Imamura, K.: Computation of the k-error linear complexity of binary sequences with period 2n. In: Jaffar, J., Yap, R.H.C. (eds.) ASIAN 1996. LNCS, vol. 1179, pp. 182–191. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  5. Kaida, T., Uehara, S., Imamura, K.: An algorithm for the k-error linear complexity of sequences over GF(p m) with period p n, p a prime. Inform. Comput. 151, 134–147 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Kurosawa, K., Sato, F., Sakata, T., Kishimoto, W.: A relationship between linear complexity and k-error linear complexity. IEEE Trans. Inform. Theory 46, 694–698 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Lauder, A.G.B., Paterson, K.G.: Computing the error linear complexity spectrum of a binary sequence of period 2n. IEEE Trans. Inform. Theory 49, 273–280 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Lidl, R., Niederreiter, H.: Finite Fields. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  9. Meidl, W.: How many bits have to be changed to decrease the linear complexity? Des. Codes Cryptogr. 33, 109–122 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Meidl, W.: On the stability of 2n-periodic binary sequences. IEEE Trans. Inform. Theory 51, 1151–1155 (2005)

    Article  MathSciNet  Google Scholar 

  11. Meidl, W., Niederreiter, H.: Counting functions and expected values for the k-error linear complexity. Finite Fields Appl. 8, 142–154 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Meidl, W., Niederreiter, H.: Linear complexity, k-error linear complexity, and the discrete Fourier transform. J. Complexity 18, 87–103 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Meidl, W., Niederreiter, H.: On the expected value of the linear complexity and the k-error linear complexity of periodic sequences. IEEE Trans. Inform. Theory 48, 2817–2825 (2002)

    Article  MathSciNet  Google Scholar 

  14. Meidl, W., Niederreiter, H.: Periodic sequences with maximal linear complexity and large k-error linear complexity. Appl. Algebra Engrg. Comm. Comput. 14, 273–286 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Meidl, W., Venkateswarlu, A.: Remarks on the k-error linear complexity of p n-periodic sequences (submitted for publication)

    Google Scholar 

  16. Niederreiter, H.: Some computable complexity measures for binary sequences. In: Ding, C., Helleseth, T., Niederreiter, H. (eds.) Sequences and Their Applications, pp. 67–78. Springer, London (1999)

    Google Scholar 

  17. Niederreiter, H.: Periodic sequences with large k-error linear complexity. IEEE Trans. Inform. Theory 49, 501–505 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Niederreiter, H.: Linear complexity and related complexity measures for sequences. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 1–17. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  19. Niederreiter, H., Paschinger, H.: Counting functions and expected values in the stability theory of stream ciphers. In: Ding, C., Helleseth, T., Niederreiter, H. (eds.) Sequences and Their Applications, pp. 318–329. Springer, London (1999)

    Google Scholar 

  20. Niederreiter, H., Shparlinski, I.E.: Periodic sequences with maximal linear complexity and almost maximal k-error linear complexity. In: Paterson, K.G. (ed.) Cryptography and Coding 2003. LNCS, vol. 2898, pp. 183–189. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  21. Rueppel, R.A.: Analysis and Design of Stream Ciphers. Springer, Berlin (1986)

    MATH  Google Scholar 

  22. Sălăgean, A.: On the computation of the linear complexity and the k-error linear complexity of binary sequences with period a power of two. IEEE Trans. Inform. Theory 51, 1145–1150 (2005)

    Article  MathSciNet  Google Scholar 

  23. Stamp, M., Martin, C.F.: An algorithm for the k-error linear complexity of binary sequences with period 2n. IEEE Trans. Inform. Theory 39, 1398–1401 (1993)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fu, FW., Niederreiter, H., Su, M. (2006). The Characterization of 2n-Periodic Binary Sequences with Fixed 1-Error Linear Complexity. In: Gong, G., Helleseth, T., Song, HY., Yang, K. (eds) Sequences and Their Applications – SETA 2006. SETA 2006. Lecture Notes in Computer Science, vol 4086. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11863854_8

Download citation

  • DOI: https://doi.org/10.1007/11863854_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44523-4

  • Online ISBN: 978-3-540-44524-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics