Nothing Special   »   [go: up one dir, main page]

Skip to main content

Uniqueness of Non-Gaussian Subspace Analysis

  • Conference paper
Independent Component Analysis and Blind Signal Separation (ICA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3889))

Abstract

Dimension reduction provides an important tool for preprocessing large scale data sets. A possible model for dimension reduction is realized by projecting onto the non-Gaussian part of a given multivariate recording. We prove that the subspaces of such a projection are unique given that the Gaussian subspace is of maximal dimension. This result therefore guarantees that projection algorithms uniquely recover the underlying lower dimensional data signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Friedman, J., Tukey, J.: A projection pursuit algorithm for exploratory data analysis. IEEE Trans. on Computers 23, 881–890 (1975)

    Article  Google Scholar 

  2. Hyvärinen, A., Karhunen, J., Oja, E.: Independent component analysis. John Wiley & Sons, Chichester (2001)

    Book  Google Scholar 

  3. Blanchard, G., Kawanabe, M., Sugiyama, M., Spokoiny, V., Müller, K.R.: In search of nongaussian components of a high-dimensional distribution. JMLR (2005) (in revision). The preprint is available at, http://www.cs.titech.ac.jp/tr/reports/2005/TR05-0003.pdf

  4. Kawanabe, M.: Linear dimension reduction based on the fourth-order cumulant tensor. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3697, pp. 151–156. Springer, Heidelberg (2005)

    Google Scholar 

  5. Theis, F.: Uniqueness of complex and multidimensional independent component analysis. Signal Processing 84, 951–956 (2004)

    Article  MATH  Google Scholar 

  6. Kawanabe, M., Theis, F.: Extracting non-gaussian subspaces by characteristic functions. In: ICA 2006 (2006) (submitted)

    Google Scholar 

  7. Comon, P.: Independent component analysis - a new concept? Signal Processing 36, 287–314 (1994)

    Article  MATH  Google Scholar 

  8. Theis, F.: A new concept for separability problems in blind source separation. Neural Computation 16, 1827–1850 (2004)

    Article  MATH  Google Scholar 

  9. Theis, F.: Multidimensional independent component analysis using characteristic functions. In: Proc. EUSIPCO 2005, Antalya, Turkey (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Theis, F.J., Kawanabe, M. (2006). Uniqueness of Non-Gaussian Subspace Analysis. In: Rosca, J., Erdogmus, D., Príncipe, J.C., Haykin, S. (eds) Independent Component Analysis and Blind Signal Separation. ICA 2006. Lecture Notes in Computer Science, vol 3889. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11679363_114

Download citation

  • DOI: https://doi.org/10.1007/11679363_114

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-32630-4

  • Online ISBN: 978-3-540-32631-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics