Abstract
We describe an O(n 3/log n)-time algorithm for the all-pairs-shortest-paths problem for a real-weighted directed graph with n vertices. This slightly improves a series of previous, slightly subcubic algorithms by Fredman (1976), Takaoka (1992), Dobosiewicz (1990), Han (2004), Takaoka (2004), and Zwick (2004). The new algorithm is surprisingly simple and different from previous ones.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms. Addison-Wesley, Reading (1974)
Alon, N., Galil, Z., Margalit, O.: On the exponent of the all pairs shortest path problem. J. Comput. Sys. Sci. 54, 255–262 (1997)
Arlazarov, V.L., Dinic, E.C., Kronrod, M.A., Faradzev, I.A.: On economical construction of the transitive closure of a directed graph. Soviet Math. Dokl. 11, 1209–1210 (1970)
Buchsbaum, A.L., Kaplan, H., Rogers, A., Westbrook, J.R.: Linear-time pointer-machine algorithms for least common ancestors, MST verification, and dominators. In: Proc. 30th ACM Sympos. Theory Comput., pp. 279–288 (1998)
Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. J. Symbolic Comput. 9, 251–280 (1990)
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. McGraw-Hill, New York (2001)
Dobosiewicz, W.: A more efficient algorithm for the min-plus multiplication. Int. J. Computer Math. 32, 49–60 (1990)
Eppstein, D.: Quasiconvex analysis of backtracking algorithms. In: Proc. 15th ACM-SIAM Sympos. Discrete Algorithms, pp. 788–797 (2004)
Feder, T., Motwani, R.: Clique partitions, graph compression and speeding-up algorithms. J. Comput. Sys. Sci. 51, 261–272 (1995)
Fredman, M.L.: New bounds on the complexity of the shortest path problem. SIAM J. Comput. 5, 49–60 (1976)
Galil, Z., Margalit, O.: All pairs shortest paths for graphs with small integer length edges. J. Comput. Sys. Sci. 54, 243–254 (1997)
Han, Y.: Improved algorithm for all pairs shortest paths. Inform. Process. Lett. 91, 245–250 (2004)
Pettie, S.: A new approach to all-pairs shortest paths on real-weighted graphs. Theoret. Comput. Sci. 312, 47–74 (2004)
Pettie, S., Ramachandran, V.: A shortest path algorithm for real-weighted undirected graphs. SIAM J. Comput. (to appear)
Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction. Springer, New York (1985)
Seidel, R.: On the all-pairs-shortest-path problem in unweighted undirected graphs. J. Comput. Sys. Sci. 51, 400–403 (1995)
Shoshan, A., Zwick, U.: All pairs shortest paths in undirected graphs with integer weights. In: Proc. 40th IEEE Sympos. Found. Comput. Sci., pp. 605–614 (1999)
Strassen, V.: Gaussian elimination is not optimal. Numerische Mathematik 13, 354–356 (1969)
Takaoka, T.: A new upper bound on the complexity of the all pairs shortest path problem. Inform. Process. Lett. 43, 195–199 (1992)
Takaoka, T.: A faster algorithm for the all-pairs shortest path problem and its application. In: Chwa, K.-Y., Munro, J.I.J. (eds.) COCOON 2004. LNCS, vol. 3106, pp. 278–289. Springer, Heidelberg (2004)
Yuster, R., Zwick, U.: Fast sparse matrix multiplication. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 604–615. Springer, Heidelberg (2004)
Zwick, U.: All-pairs shortest paths using bridging sets and rectangular matrix multiplication. J. ACM 49, 289–317 (2002)
Zwick, U.: A slightly improved sub-cubic algorithm for the all pairs shortest paths problem with real edge lengths. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 921–932. Springer, Heidelberg (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chan, T.M. (2005). All-Pairs Shortest Paths with Real Weights in O(n 3/log n) Time. In: Dehne, F., López-Ortiz, A., Sack, JR. (eds) Algorithms and Data Structures. WADS 2005. Lecture Notes in Computer Science, vol 3608. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11534273_28
Download citation
DOI: https://doi.org/10.1007/11534273_28
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28101-6
Online ISBN: 978-3-540-31711-1
eBook Packages: Computer ScienceComputer Science (R0)