Nothing Special   »   [go: up one dir, main page]

Skip to main content

Web Site Improvements Based on Representative Pages Identification

  • Conference paper
AI 2005: Advances in Artificial Intelligence (AI 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3809))

Included in the following conference series:

Abstract

Many researchers have successfully shown that web content mining technics and web usage mining techniques can help to find out important patterns on the content and browsing behavior in a site. However, still it is an open problem how to reach a good interpretation of the cluster results after the mining process. We propose a technique called Reverse Clustering Analysis (RCA) applied to a Self Organizing Feature Map in order to identify the most representative Web Pages of the Site. Then use this information to perform enhancements in the site. Our mining process is based on the combination of WCM and WUM to find out the content that is most interesting for the visitors. We successfully test our proposal in a real web site.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kosala, R., Blockeel, H.: Web mining research: A survey. SIGKDD Explorations: Newsletter of the Special Interest Group (SIG) on Knowledge Discovery & Data Mining 2(1), 1–15 (2000)

    Google Scholar 

  2. Nielsen, J.: User Interface directions for the web. Communications of ACM 42(1), 65–72 (1999)

    Article  Google Scholar 

  3. Pal, S.K., Talwar, V., Mitra, P.: Web Mining in Soft Computing Framework: Relevance, state of the art and future directions. IEEE Transactions on Neural Networks 13(5), 1163–1177 (2002)

    Article  Google Scholar 

  4. Ríos, S., Velásquez, J., Vera, E., Yasuda, H., Aoki, T.: Using SOFM to Improve Web Site Text Content. In: Wang, L., Chen, K., Ong, Y.S. (eds.) ICNC 2005. LNCS, vol. 3611, pp. 622–626. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Ríos, S., Velásquez, J., Vera, E., Yasuda, H., Aoki, T.: Establishing guidelines on how to improve the web site content based on the identification of representative pages. In: IEEE/WI Int. Conf. on Web Intelligence, France (September 2005) (to appear)

    Google Scholar 

  6. Velásquez, J.D., Yasuda, H., Aoki, T., Weber, R., Vera, E.: Using self-organizing feature maps to acquire knowledge about visitor behavior in a web site. In: Palade, V., Howlett, R.J., Jain, L. (eds.) KES 2003. LNCS, vol. 2773, pp. 951–958. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Velásquez, J.D., Ríos, S., Bassi, A., Yasuda, H., Aoki, T.: Towards the identification of keywords in the web site text content: A methodological approach. International Journal of Web Information Systems 1, 11–15 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ríos, S.A., Velásquez, J.D., Yasuda, H., Aoki, T. (2005). Web Site Improvements Based on Representative Pages Identification. In: Zhang, S., Jarvis, R. (eds) AI 2005: Advances in Artificial Intelligence. AI 2005. Lecture Notes in Computer Science(), vol 3809. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11589990_162

Download citation

  • DOI: https://doi.org/10.1007/11589990_162

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-30462-3

  • Online ISBN: 978-3-540-31652-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics