Abstract
In this paper we explore a topic which is at the intersection of two areas of Machine Learning: namely Support Vector Machines (SVMs) and Inductive Logic Programming (ILP). We propose a general method for constructing kernels for Support Vector Inductive Logic Programming (SVILP). The kernel not only captures the semantic and syntactic relational information contained in the data but also provides the flexibility of using arbitrary forms of structured and non-structured data coded in a relational way. While specialised kernels have been developed for strings, trees and graphs our approach uses declarative background knowledge to provide the learning bias. The use of explicitly encoded background knowledge distinguishes SVILP from existing relational kernels which in ILP-terms work purely at the atomic generalisation level. The SVILP approach is a form of generalisation relative to background knowledge, though the final combining function for the ILP-learned clauses is an SVM rather than a logical conjunction. We evaluate SVILP empirically against related approaches, including an industry-standard toxin predictor called TOPKAT. Evaluation is conducted on a new broad-ranging toxicity dataset (DSSTox). The experimental results demonstrate that our approach significantly outperforms all other approaches in the study.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Gärtner, T., Flach, P.A., Kowalczyk, A., Smola, A.J.: Multi-instance kernels. In: Proceedings of the Nineteenth International Conference on Machine Learning, pp. 176–186 (2002)
Gärtner, T., Lloyd, J.W., Flach, P.A.: Kernels for structured data. In: Matwin, S., Sammut, C. (eds.) ILP 2002. LNCS (LNAI), vol. 2583, pp. 66–83. Springer, Heidelberg (2003)
Plotkin, G.: A note on inductive generalisation. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence 5, pp. 153–163. Edinburgh University Press, Edinburgh (1969)
Plotkin, G.: Automatic Methods of Inductive Inference. PhD thesis, Edinburgh University (1971)
Page, D., Frisch, A.: Generalization and learnability: A study of constrained atoms. In: Muggleton, S. (ed.) Inductive Logic Programming. Academic Press, London (1992)
Lloyd, J.: Logic for Learning. Springer, Berlin (2003)
Chevaleyre, Y., Zucker, J.: A framework for learning rules from multiple instance data. In: Flach, P.A., De Raedt, L. (eds.) ECML 2001. LNCS (LNAI), vol. 2167, pp. 49–60. Springer, Heidelberg (2001)
Dumais, S., Platt, J., Heckermann, D., Sahami, M.: Inductive learning algorithms and representations for text categorisation. In: Proceedings of CIKM 1998, 7th ACM International Conference on Information and Knowledge Management, pp. 148–155 (1998)
Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)
Mercer, J.: Functions of positive and negative type and their connection with the theory of integral equations. Philosophical Transactions of the Royal Society London (A) 209, 415–446 (1909)
Haussler, D.: Convolution kernels on discrete structures. Technical Report UCSC-CRL-99-10, University of California in Santa Cruz, Computer Science Department (1999)
Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., Watkins, C.: Text classification using string kernels. Journal of Machine Learning Research 2, 419–444 (2002)
Horváth, T., Gaertner, T., Wrobel, S.: Cyclic pattern kernels for predictive graph mining. In: Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 158–167 (2004)
Muggleton, S.: Inductive Logic Programming. New Generation Computing 8, 295–318 (1991)
King, R., Whelan, K., Jones, F., Reiser, P., Bryant, C., Muggleton, S., Kell, D., Oliver, S.: Functional genomic hypothesis generation and experimentation by a robot scientist. Nature 427, 247–252 (2004)
Sternberg, M., Muggleton, S.: Structure activity relationships (SAR) and pharmacophore discovery using inductive logic programming (ILP). QSAR and Combinatorial Science 22 (2003)
Muggleton, S.: Bayesian Inductive Logic Programming. In: Warmuth, M. (ed.) Proceedings of the Seventh Annual ACM Conference on Computational Learning Theory, pp. 3–11. ACM Press, New York (1994) Keynote presentation
Muggleton, S.: Inverse entailment and Progol. New Generation Computing 13, 245–286 (1995)
Kramer, S., Lavrac, N., Flach, P.: Propositionalisation approaches to Relational Data Mining. In: Dzeroski, S., Larac, N. (eds.) Relational Data Mining, pp. 262–291. Springer, Berlin (2001)
Lavrač, N., Džeroski, S., Grobelnik, M.: Learning non-recursive definitions of relations with LINUS. In: Kodratoff, Y. (ed.) EWSL 1991. LNCS, vol. 482. Springer, Heidelberg (1991)
Kramer, S., Pfahringer, B., Helma, C.: Stochastic propositionalisation of non-determinate background knowledge. In: Proceedings of the Eighth International Conference on Inductive Logic Programming, pp. 80–94. Springer, Berlin (1998)
Srinivasan, A., King, R.: Feature construction with inductive logic programming: a study of quantitative predictions of biological activity aided by structural attributes. Data Mining and Knowledge Discovery 3, 35–57 (1999)
Dehaspe, L., Toivonen, H.: Discovery of frequent datalog patterns. Data Mining and Knowledge Discovery 3, 7–36 (1999)
Kramer, S., Frant, E.: Bottom-up propositionalisation. In: Proceedings of the ILP-2000 Work-In-Progress Track, pp. 156–162. Imperial College, London (2000)
Mavroeidis, D., Flach, P.: Improved distances for structured data. In: Horváth, T., Yamamoto, A. (eds.) ILP 2003. LNCS (LNAI), vol. 2835, pp. 251–268. Springer, Heidelberg (2003)
Cumby, C., Roth, D.: On kernel methods for relational learning. In: Proceedings of the Twentieth International Conference on Machine Learning, pp. 107–114 (2003)
Gaertner, T., Driessens, K., Ramon, J.: Graph kernels and gaussian processes for relational reinforement learning. In: Proc. of the 13th International Conference on Inductive Logic Programming, pp. 146–163. Springer, Heidelberg (2003)
Ramon, J., Bruynooghe, M.: A framework for defining distances between first-order logic objects. In: Page, D.L. (ed.) ILP 1998. LNCS (LNAI), vol. 1446, pp. 271–280. Springer, Heidelberg (1998)
Horvath, T., Wrobel, S., Bohnebeck, U.: Relational instance-based learning with lists and terms. Machine Learning 43, 53–80 (2001)
Nienhuys-Cheng, S.: Distance between Herbrand interpretations: a measure for approximations to a target concept. In: Džeroski, S., Lavrač, N. (eds.) ILP 1997. LNCS (LNAI), vol. 1297, pp. 321–326. Springer, Heidelberg (1997)
King, R., Muggleton, S., Srinivasan, A., Sternberg, M.: Structure-activity relationships derived by machine learning: the use of atoms and their bond connectives to predict mutagenicity by inductive logic programming. Proceedings of the National Academy of Sciences 93, 438–442 (1996)
Richard, A., Williams, C.: Distributed structure-searchable toxicity (DSSTox) public database network: A proposal. Mutation Research 499, 27–52 (2000)
Pearlman, R.S.: Concord User’s Manual. Tripos, Inc., St Louis, Missouri (2000)
Collobert, R., Bengio, S.: Svmtorch: Support vector machines for large-scale regression problems. Journal of Machine Learning Research 1, 143–160 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Muggleton, S., Lodhi, H., Amini, A., Sternberg, M.J.E. (2005). Support Vector Inductive Logic Programming. In: Hoffmann, A., Motoda, H., Scheffer, T. (eds) Discovery Science. DS 2005. Lecture Notes in Computer Science(), vol 3735. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11563983_15
Download citation
DOI: https://doi.org/10.1007/11563983_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-29230-2
Online ISBN: 978-3-540-31698-5
eBook Packages: Computer ScienceComputer Science (R0)