Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Unified Subspace Outlier Ensemble Framework for Outlier Detection

  • Conference paper
Advances in Web-Age Information Management (WAIM 2005)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3739))

Included in the following conference series:

Abstract

This paper proposes a unified framework for outlier detection in high dimensional spaces from an ensemble-learning viewpoint. Moreover, to demonstrate the usefulness of our framework, we developed a very simple and fast algorithm, namely SOE1, in which only subspaces with one dimension is used for mining outliers from large categorical datasets. Experimental results demonstrate the superiority of SOE1 algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. He, Z., Xu, X., Huang, J., Deng, S.: A Frequent Pattern Discovery Based Method for Outlier Detection. In: Li, Q., Wang, G., Feng, L. (eds.) WAIM 2004. LNCS, vol. 3129, pp. 726–732. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  2. He, Z., Xu, X., Deng, S.: Discovering Cluster Based Local Outliers. Pattern Recognition Letters 24(9-10), 1641–1650 (2003)

    Article  MATH  Google Scholar 

  3. Ramaswamy, S., Rastogi, R., Kyuseok, S.: Efficient Algorithms for Mining Outliers from Large Data Sets. In: Proc. of SIGMOD 2000, pp. 93–104 (2000)

    Google Scholar 

  4. Aggarwal, C., Yu, P.: Outlier Detection for High Dimensional Data. In: Proc. of SIGMOD 2001, pp. 37-46 (2001)

    Google Scholar 

  5. Merz, G., Murphy, P.: Uci Repository of Machine Learning Databases (1996), http://www.ics.uci.edu/~mlearn/MLRepository.html

  6. Harkins, S., et al.: Outlier Detection Using Replicator Neural Networks. In: Kambayashi, Y., Winiwarter, W., Arikawa, M. (eds.) DaWaK 2002. LNCS, vol. 2454, pp. 170–180. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  7. He, Z., Xu, X., Huang, J., Deng, S.: Mining Class Outliers: Concepts, Algorithms and Applications in CRM. Expert System With Applications 27(4), 681–697 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

He, Z., Deng, S., Xu, X. (2005). A Unified Subspace Outlier Ensemble Framework for Outlier Detection. In: Fan, W., Wu, Z., Yang, J. (eds) Advances in Web-Age Information Management. WAIM 2005. Lecture Notes in Computer Science, vol 3739. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11563952_56

Download citation

  • DOI: https://doi.org/10.1007/11563952_56

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29227-2

  • Online ISBN: 978-3-540-32087-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics