Nothing Special   »   [go: up one dir, main page]

Skip to main content

Computing Common Intervals of K Permutations, with Applications to Modular Decomposition of Graphs

  • Conference paper
Algorithms – ESA 2005 (ESA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3669))

Included in the following conference series:

Abstract

We introduce a new way to compute common intervals of K permutations based on a very simple and general notion of generators of common intervals. This formalism leads to simple and efficient algorithms to compute the set of all common intervals of K permutations, that can contain a quadratic number of intervals, as well as a linear space basis of this set of common intervals. Finally, we show how our results on permutations can be used for computing the modular decomposition of graphs in linear time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bérard, S., Bergeron, A., Chauve, C.: Conserved structures in evolution scenarios. In: Lagergren, J. (ed.) RECOMB-WS 2004. LNCS (LNBI), vol. 3388, pp. 1–15. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Bergeron, A., Chauve, C., de Montgolfier, F., Raffinot, M.: Computing common intervals of K permutations, with applications to modular decomposition of graphs. LIAFA technical report 2005-006, available at: http://www.liafa.jussieu.fr/web9/rapportrech/listrapport_fr.php?anscol=2005

  3. Booth, S., Lueker, G.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-trees algorithms. J. Comput. Syst. Sci. 13, 335–379 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bui Xuan, B.M., Habib, M., Paul, C.: From Permutations to Graph Algorithms, LIRMM technical report RR-05021 (2005)

    Google Scholar 

  5. Capelle, C., Habib, M.: Graph decompositions and factorizing permutations. In: Fifth Israel Symposium on Theory of Computing and Systems, ISTCS 1997, pp. 132–143. IEEE Computer Society Press, Los Alamitos (1997)

    Chapter  Google Scholar 

  6. Cournier, A., Habib, M.: A new linear algorithm for modular decomposition. In: Tison, S. (ed.) CAAP 1994. LNCS, vol. 787, pp. 68–84. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  7. Dahlhaus, E., Gustedt, J., McConnell, R.M.: Efficient and practical algorithms for sequential modular decomposition. J. Algorithms 41(2), 360–387 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Figeac, M., Varré, J.-S.: Sorting by reversals with common intervals. In: Jonassen, I., Kim, J. (eds.) WABI 2004. LNCS (LNBI), vol. 3240, pp. 26–37. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Habib, M., de Montgolfier, F., Paul, C.: A Simple Linear-Time Modular Decomposition Algorithm for Graphs, Using Order Extension. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 187–198. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Heber, S., Stoye, J.: Finding all common intervals of k permutations. In: Amir, A., Landau, G.M. (eds.) CPM 2001. LNCS, vol. 2089, pp. 207–218. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  11. Landau, G.M., Parida, L., Weimann, O.: Gene Proximity Analysis Across Whole Genomes via PQ Trees. In: 6th Combinatorial Pattern Matching Conference, CPM (2005)

    Google Scholar 

  12. McConnell, R.M., de Montgolfier, F.: Algebraic Operations on PQ-trees and Modular Decomposition Trees. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 421–432. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. McConnell, R.M., Spinrad, J.: Linear-time modular decomposition and efficient transitive orientation of comparability graphs. In: Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 536–545. ACM/SIAM (1994)

    Google Scholar 

  14. McConnell, R.M., Spinrad, J.: Ordered vertex partitioning. Discrete Mathematics & Theoretical Computer Science 4, 45–60 (2000)

    MATH  MathSciNet  Google Scholar 

  15. Möhring, R.H., Radermacher, F.J.: Substitution decomposition for discrete structures and connections with combinatorial optimization. Annals of Discrete Mathematics 19, 257–356 (1984)

    Google Scholar 

  16. Uno, T., Yagiura, M.: Fast algorithms to enumerate all common intervals of two permutations. Algorithmica 26(2), 290–309 (2000)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bergeron, A., Chauve, C., de Montgolfier, F., Raffinot, M. (2005). Computing Common Intervals of K Permutations, with Applications to Modular Decomposition of Graphs. In: Brodal, G.S., Leonardi, S. (eds) Algorithms – ESA 2005. ESA 2005. Lecture Notes in Computer Science, vol 3669. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11561071_69

Download citation

  • DOI: https://doi.org/10.1007/11561071_69

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-29118-3

  • Online ISBN: 978-3-540-31951-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics