Nothing Special   »   [go: up one dir, main page]

Skip to main content

Pocket Recognition on a Protein Using Euclidean Voronoi Diagram of Atoms

  • Conference paper
Computational Science and Its Applications – ICCSA 2005 (ICCSA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3480))

Included in the following conference series:

Abstract

Proteins consist of atoms. Given a protein, the automatic recognition of depressed regions, called pockets, on the surface of the protein is important for protein-ligand docking and facilitates fast development of new drugs. Recently, computational approaches for the recognition of pockets have emerged. Presented in this paper is a geometric method for the pocket recognition based on Voronoi diagram for atoms in Euclidean distance metric.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Angelov, B., Sadoc, J.-F., Jullien, R., Soyer, A., Mornon, J.-P., Chomilier, J.: Nonatomic solvent-driven Voronoi tessellation of proteins: an open tool to analyze protein folds. Proteins: Structure, Function, and Genetics 49, 446–456 (2002)

    Article  Google Scholar 

  2. Connolly, M.L.: Solvent-accessible surfaces of proteins and nucleic acids. Science 221, 709–713 (1983)

    Article  Google Scholar 

  3. Edelsbrunner, H., Facello, M., Liang, J.: On the definition and the construction of pockets in macromolecules. Discrete Applied Mathematics 88, 83–102 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Gerstein, M., Tsai, J., Levitt, M.: The volume of atoms on the protein surface: calculated from simulation, using Voronoi polyhedra. Journal of Molecular Biology 249, 955–966 (1995)

    Article  Google Scholar 

  5. Goede, A., Preissner, R., Frömmel, C.: Voronoi cell: new method for allocation of space among atoms: elimination of avoid- able errors in calculation of atomic volume and density. Journal of Computational Chemistry 18, 1113–1123 (1997)

    Google Scholar 

  6. Kim, D.-S., Kim, D., Sugihara, K.: Voronoi diagram of a circle set from Voronoi diagram of a point set: I. Topology. Computer Aided Geometric Design 18, 541–562 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Kim, D.-S., Kim, D., Sugihara, K.: Voronoi diagram of a circle set from Voronoi diagram of a point set: II. Geometry, Computer Aided Geometric Design 18, 563–585 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Kim, D.-S., Cho, Y., Kim, D., Kim, S., Bhak, J.: Euclidean Voronoi Diagram of 3D Spheres and Applications to Protein Structure Analysis. In: International Symposium on Voronoi Diagrams in Science and Engineering, pp. 13–15. University of Tokyo, Tokyo (2004)

    Google Scholar 

  9. Kim, D.-S., Cho, Y., Kim, D.: Edge-tracing algorithm for Euclidean Voronoi diagram of 3D spheres. In: Proc. 16th Canadian Conference on Computational Geometry, pp. 176–179 (2004)

    Google Scholar 

  10. Kunts, I.D.: Structure-based strategies for drug design and discovery. Science 257, 1078–1082 (1992)

    Article  Google Scholar 

  11. Lee, B., Richards, F.M.: The interpretation of protein structures: estimation of static accessibility. Journal of Molecular Biology 55, 379–400 (1971)

    Article  Google Scholar 

  12. Liang, J., Edelsbrunner, H., Woodward, C.: Anatomy of protein pockets and cavities:Measurement of binding site geometry and implications for ligand design. Protein Science 7, 1884–1897 (1998)

    Article  Google Scholar 

  13. Parsons, D., Canny, J.: Geometric problems in molecular biology and robotics. In: 2nd International Conference on Intelligent Systems for Molecular Biology, Palo Alto, CA, pp. 322–330 (1994)

    Google Scholar 

  14. Peters, K.P., Fauck, J., Frömmel, C.: The Automatic Search for Ligand Bind¬ing Sites in Protein of Know Three-dimensional Strucutre Using only Geometric Criteria. Journal of Molecular Biology 256, 201–213 (1996)

    Google Scholar 

  15. RCSB Protein Data Bank (2004), http://www.rcsb.org/pdb/

  16. Zimmer, R., Wöhler, M., Thiele, R.: New scoring schemes for protein fold recognition based on Voronoi contacts. Bioinformatics 14, 295–308 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kim, DS., Cho, CH., Cho, Y., Won, C.I., Kim, D. (2005). Pocket Recognition on a Protein Using Euclidean Voronoi Diagram of Atoms. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2005. ICCSA 2005. Lecture Notes in Computer Science, vol 3480. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11424758_73

Download citation

  • DOI: https://doi.org/10.1007/11424758_73

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25860-5

  • Online ISBN: 978-3-540-32043-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics