Nothing Special   »   [go: up one dir, main page]

Skip to main content

Software and Hardware Testing Using Combinatorial Covering Suites

  • Chapter
Graph Theory, Combinatorics and Algorithms

Part of the book series: Operations Research/Computer Science Interfaces Series ((volume 34))

Abstract

In the 21st century our society is becoming more and more dependent on software systems. The safety of these systems and the quality of our lives is increasingly dependent on the quality of such systems. A key element in the manufacture and quality assurance process in software engineering is the testing of software and hardware systems. The construction of efficient combinatorial covering suites has important applications in the testing of hardware and software. In this paper we define the general problem, discuss the lower bounds on the size of covering suites, and give a series of constructions that achieve these bounds asymptotically. These constructions include the use of finite field theory, extremal set theory, group theory, coding theory, combinatorial recursive techniques, and other areas of computer science and mathematics. The study of these combinatorial covering suites is a fascinating example of the interplay between pure mathematics and the applied problems generated by software and hardware engineers. The wide range of mathematical techniques used, and the often unexpected applications of combinatorial covering suites make for a rewarding study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Azar J., Motwani R., and Naor J., Approximating probability distributions using small sample spaces. Combinatorica 18: 151–171 (1998).

    MathSciNet  MATH  Google Scholar 

  2. Boroday S. Y., Determining essential arguments of Boolean functions. (in Russian), in Proceedings of the Conference on Industrial Mathematics, Taganrog (1998), 59–61. The translation is a personal communication from the author.

    Google Scholar 

  3. Boroday S.Y. and Grunskii I. S., Recursive generation of locally complete tests. Cybernetics and Systems Analysis 28: 20–25 (1992).

    MathSciNet  Google Scholar 

  4. Bose R. C., Parker E. T., and Shrikhande S., Further results on the construction of mutually orthogonal Latin squares and the falsity of Euler’s conjecture. Can. J. Math. 12: 189–203 (1960).

    MathSciNet  MATH  Google Scholar 

  5. Bush K. A., Ageneralization of the theorem due to MacNeish. Ann. Math. Stat. 23: 293–295 (1952).

    MATH  MathSciNet  Google Scholar 

  6. Bush K. A., Orthogonal arrays of index unity. Annals of Mathematical Statistics 23: 426–434 (1952).

    MATH  MathSciNet  Google Scholar 

  7. Chandra A. K., Kou L. T., Markowsky G., and Zaks S., On sets of Boolean n-vectors with all k-projections surjective. Acta Inform. 20: 103–111 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  8. Chateauneuf M. A. and Kreher D. L., On the state of strength 3 covering arrays. J. Combinatorial Designs, Journal of Combinatorial Designs 10 (2002), no. 4, 217–238. Available at http://www.math.mtu.edu/~kreher/.

    Article  MathSciNet  MATH  Google Scholar 

  9. Chateauneuf M. A., Colbourn C. J., and Kreher D. L., Covering arrays of strength 3. Designs, Codes, and Cryptography, 16: 235–242 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  10. Chowla S., Erdös P., and Straus E. G., On the maximal number of pairwise orthogonal Latin squares of a given order. Canad. J. Math. 13: 204–208 (1960).

    Google Scholar 

  11. Cohen D. M., Dalal S. R., Fredman M. L., and Patton G. C., The AETGSystem: An approach to Testing Based on Combinatorial Design. IEEE Transactions on Software Engineering, 23: 437–444 (1997).

    Article  Google Scholar 

  12. Colbourn C. J. and Dinitz J. H., The CRC Handbook of Combinatorial Designs. CRC Press (1996).

    Google Scholar 

  13. Dill D., Murø Description Language and Verifier. http://sprout.stanford.edu/dill/murphi.html.

    Google Scholar 

  14. Edelman A., The mathematics of the Pentium division bug. SIAM Review 39: 54–67 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  15. Erdös P., Ko C., and Rado R., Intersection theorems for systems of finite sets. Quart. J. Math. Oxford 12: 313–318 (1961).

    MATH  Google Scholar 

  16. Farchi E., Hartman A., and Pinter S. S., Using a model-based test generator to test for standards conformance. IBM Systems Journal 41: 89–110 (2002).

    Article  Google Scholar 

  17. Fisher R. A., An examination of the different possible solutions of a problem in incomplete blocks. Ann. Eugenics 10: 52–75 (1940).

    MATH  MathSciNet  Google Scholar 

  18. Gal S., Rendezvous search on a line. Operations Research 47: 974–976 (1999).

    MATH  Google Scholar 

  19. Gargano L., Körner J., and Vaccaro U., Capacities: from information theory to extremal set theory. J. Comb. Theory, Ser. A. 68: 296–316 (1994).

    Article  MATH  Google Scholar 

  20. Gargano L., Körner J., and Vaccaro U., Sperner capacities. Graphs and Combinatorics, 9: 31–46 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  21. Godbole A. P., Skipper D. E., and Sunley R. A., t-Covering arrays: Upper bounds and Poisson approximations. Combinatorics, Probability, and Computing 5: 105–117 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  22. Greene C., Sperner families and partitions of a partially ordered set. In Combinatorics (ed. M. Hall Jr. and J. van Lint) Dordrecht, Holland, (1975) pp. 277–290.

    Google Scholar 

  23. Harborth H. and Kemnitz A., Calculations for Bertrand’s Postulate. Math. Magazine 54: 33–34 (1981).

    MathSciNet  MATH  Google Scholar 

  24. Katona G. O. H., Two applications (for search theory and truth functions) of Sperner type theorems. Periodica Math. Hung. 3: 19–26 (1973).

    Article  MATH  MathSciNet  Google Scholar 

  25. Kleitman D. J. and Spencer J., Families of k-independent sets. Discrete Math. 6: 255–262 (1973).

    MathSciNet  MATH  Google Scholar 

  26. Lei Y. and Tai K. C., In-parameter order: A test generation strategy for pairwise testing. in Proc. 3rd IEEE High Assurance Systems Engineering Symposium, (1998) pp. 254–161.

    Google Scholar 

  27. Leveson N. and Turner C. S. An investigation of the Therac-25 accidents. IEEE Computer, 26: 18–41 (1993).

    Google Scholar 

  28. Lim W. S. and Alpern S., Minimax rendezvous on the line. SIAM J. Control and Optim. 34: 1650–1665 (1996).

    MathSciNet  MATH  Google Scholar 

  29. Lions J. L., Ariane 5 Flight 501 failure, Report by the Inquiry Board. http://sunnyday.mit.edu/accidents/Ariane5accidentreport.html.

    Google Scholar 

  30. Metsch K., Improvement of Bruck’s completion theorem. Designs, Codes and Cryptography 1: 99–116 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  31. Naor J. and Naor M., Small-bias probability spaces: efficient constructions and applications. SIAM J. Computing, 22: 838–856 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  32. Naor M., Schulman L. J., and Srinvasan A., Splitters and near-optimal randomization. Proceedings of the 36th Annual Symposium on Foundations of Computer Science (FOCS), (1996), pp. 182–191.

    Google Scholar 

  33. Nurmela K., Upper bounds for covering arrays by tabu search. Discrete Applied Mathematics, 138: 143–152 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  34. Peled D. A., Software reliability methods. Springer, New York (2001).

    MATH  Google Scholar 

  35. Rényi A., Foundations of probability. Wiley, New York, (1971).

    Google Scholar 

  36. Roux G., k-propriétés dans les tableaux de n colonnes; cas particulier de la k-surjectivité et de la k-permutativité. Ph. D. Dissertation, University of Paris 6, (1987).

    Google Scholar 

  37. Seroussi G. and Bshouty N. H., Vector sets for exhaustive testing of logic circuits. IEEE Trans. Information Theory, 34: 513–522 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  38. Sloane N. J. A., Covering arrays and intersecting codes. J. Combinatorial Designs 1: 51–63 (1993).

    MATH  MathSciNet  Google Scholar 

  39. Stevens B., Ling A., and Mendelsohn E., A direct construction of transversal covers using group divisible designs. Ars Combin. 63: 145–159 (2002).

    MathSciNet  MATH  Google Scholar 

  40. Stevens B., Moura L., and Mendelsohn E., Lower bounds for transversal covers. Designs, Codes, and Cryptography, 15: 279–299 (1998).

    Article  MathSciNet  Google Scholar 

  41. Tang D. T. and Chen C. L., Iterative exhaustive pattern generation for logic testing. IBM J. Res. Develop. 28: 212–219 (1984).

    Article  MATH  Google Scholar 

  42. Tang D. T. and Woo L. S., Exhaustive test pattern generation with constant weight vectors. IEEE Trans. Computers 32: 1145–1150 (1983).

    MATH  Google Scholar 

  43. Web W. W., The Vandermonde determinant, http://www.webeq.com/WebEQ/2.3/docs/tour/determinant.html

    Google Scholar 

  44. West D. B., Introduction to Graph Theory. Prentice Hall NJ, (1996).

    Google Scholar 

  45. Williams A. W., Determination of Test Configurations for Pair-Wise Interaction Coverage. in Proceedings of the 13th International Conference on the Testing of Communicating Systems (TestCom 2000), Ottawa Canada, (2000) pp. 59–74.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Hartman, A. (2005). Software and Hardware Testing Using Combinatorial Covering Suites. In: Golumbic, M.C., Hartman, I.BA. (eds) Graph Theory, Combinatorics and Algorithms. Operations Research/Computer Science Interfaces Series, vol 34. Springer, Boston, MA. https://doi.org/10.1007/0-387-25036-0_10

Download citation

Publish with us

Policies and ethics