Abstract
Image segmentation in mathematical morphology is essentially based on one method: the watershed of a gradient image from a set of markers. We show that this watershed can be obtained from the neighbourhood graph of the initial image. The result of the segmentation is then a minimum spanning forest of the neighbourhood graph. Powerful interactive and very fast segmentation methods are derived
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Beucher S., Lantuéjoul C., Use of watersheds in contour detection, Int. Workshop on Image Processing, CCETT/IRISA, Rennes, France, Sept. 79.
Beucher S., Segmentation d’images et Morphologie Mathématique, Thèse Ecole des Mines de Paris, 1990
Grimaud M. La géodésie numérique en Morphologie Mathématique, Thèse de l’Ecole des Mines de Paris, décembre 1990
Gondran M., Minoux M., Graphes et algorithmes, Eyrolles, Paris, 1979, chapitre 4: Arbres et arborescences.
Hanusse P., Guillataud P., Sémantique des images par analyse dendronique, Actes du 8ème Congres AFCET, Lyon-Villeurbanne, France, 1991, pp. 577–598.
Hu T.C., The maximum capacity route problem, Operations Research 9, 1961, pp. 898–900.
Kruskal J.B., On the shortest spanning subtree of a graph and the traveling salesman problem, Proc. Am. Math. Soc., 71, 1956, pp. 48–50.
Meyer F., Un algorithme optimal de ligne de partage des eaux, Actes du 8ème Congres AFCET, Lyon-Villeurbanne, France, 1991, pp. 847–859.
Meyer F., Beucher S., Morphological segmentation, JVCIR, Vol.11, N1, pp. 21–46, 1990.
Meyer F., Integrals, gradients and watershed lines, in “Mathematical Morphology and its applications to Signal Processing”, Symposium held in Barcelona, May 1993, pp. 70–75
Meyer F., Arbre des minima et dynamique, Note interne CMM, juillet 1993.
Najman L. and Schmitt M., Definition and some properties of the watershed of a continuous function, in “Mathematical Morphology and its applications to Signal Processing”, Symposium held in Barcelona, May 1993, pp. 75–81
Prim R.C., Shortest connection networks and some generalizations, Bell Syst. Techn. J., 36, 1957, p. 1389.
Vincent L., Graphs and Mathematical Morphology, Signal Processing, Vol. 16, No. 4, April 1989, pp. 365–389.
Yao A.C.C., An O(IEI log log IVI)algorithm for finding minimum spanning trees, Info. Processing Letters, 4., 1975, pp. 21–25.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1994 Springer Science+Business Media Dordrecht
About this chapter
Cite this chapter
Meyer, F. (1994). Minimum Spanning Forests for Morphological Segmentation. In: Serra, J., Soille, P. (eds) Mathematical Morphology and Its Applications to Image Processing. Computational Imaging and Vision, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1040-2_11
Download citation
DOI: https://doi.org/10.1007/978-94-011-1040-2_11
Publisher Name: Springer, Dordrecht
Print ISBN: 978-94-010-4453-0
Online ISBN: 978-94-011-1040-2
eBook Packages: Springer Book Archive