Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Computational Imaging and Vision ((CIVI,volume 2))

Abstract

Image segmentation in mathematical morphology is essentially based on one method: the watershed of a gradient image from a set of markers. We show that this watershed can be obtained from the neighbourhood graph of the initial image. The result of the segmentation is then a minimum spanning forest of the neighbourhood graph. Powerful interactive and very fast segmentation methods are derived

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Beucher S., Lantuéjoul C., Use of watersheds in contour detection, Int. Workshop on Image Processing, CCETT/IRISA, Rennes, France, Sept. 79.

    Google Scholar 

  2. Beucher S., Segmentation d’images et Morphologie Mathématique, Thèse Ecole des Mines de Paris, 1990

    Google Scholar 

  3. Grimaud M. La géodésie numérique en Morphologie Mathématique, Thèse de l’Ecole des Mines de Paris, décembre 1990

    Google Scholar 

  4. Gondran M., Minoux M., Graphes et algorithmes, Eyrolles, Paris, 1979, chapitre 4: Arbres et arborescences.

    Google Scholar 

  5. Hanusse P., Guillataud P., Sémantique des images par analyse dendronique, Actes du 8ème Congres AFCET, Lyon-Villeurbanne, France, 1991, pp. 577–598.

    Google Scholar 

  6. Hu T.C., The maximum capacity route problem, Operations Research 9, 1961, pp. 898–900.

    Article  Google Scholar 

  7. Kruskal J.B., On the shortest spanning subtree of a graph and the traveling salesman problem, Proc. Am. Math. Soc., 71, 1956, pp. 48–50.

    Article  MathSciNet  Google Scholar 

  8. Meyer F., Un algorithme optimal de ligne de partage des eaux, Actes du 8ème Congres AFCET, Lyon-Villeurbanne, France, 1991, pp. 847–859.

    Google Scholar 

  9. Meyer F., Beucher S., Morphological segmentation, JVCIR, Vol.11, N1, pp. 21–46, 1990.

    Google Scholar 

  10. Meyer F., Integrals, gradients and watershed lines, in “Mathematical Morphology and its applications to Signal Processing”, Symposium held in Barcelona, May 1993, pp. 70–75

    Google Scholar 

  11. Meyer F., Arbre des minima et dynamique, Note interne CMM, juillet 1993.

    Google Scholar 

  12. Najman L. and Schmitt M., Definition and some properties of the watershed of a continuous function, in “Mathematical Morphology and its applications to Signal Processing”, Symposium held in Barcelona, May 1993, pp. 75–81

    Google Scholar 

  13. Prim R.C., Shortest connection networks and some generalizations, Bell Syst. Techn. J., 36, 1957, p. 1389.

    Google Scholar 

  14. Vincent L., Graphs and Mathematical Morphology, Signal Processing, Vol. 16, No. 4, April 1989, pp. 365–389.

    Article  MathSciNet  Google Scholar 

  15. Yao A.C.C., An O(IEI log log IVI)algorithm for finding minimum spanning trees, Info. Processing Letters, 4., 1975, pp. 21–25.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Meyer, F. (1994). Minimum Spanning Forests for Morphological Segmentation. In: Serra, J., Soille, P. (eds) Mathematical Morphology and Its Applications to Image Processing. Computational Imaging and Vision, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1040-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1040-2_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4453-0

  • Online ISBN: 978-94-011-1040-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics