Nothing Special   »   [go: up one dir, main page]

Skip to main content

On the Nucleolus of Shortest Path Games

  • Conference paper
  • First Online:
Algorithmic Game Theory (SAGT 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10504))

Included in the following conference series:

Abstract

We study a type of cooperative games introduced in [8] called shortest path games. They arise on a network that has two special nodes s and t. A coalition corresponds to a set of arcs and it receives a reward if it can connect s and t. A coalition also incurs a cost for each arc that it uses to connect s and t, thus the coalition must choose a path of minimum cost among all the arcs that it controls. These games are relevant to logistics, communication, or supply-chain networks. We give a polynomial combinatorial algorithm to compute the nucleolus. This vector reflects the relative importance of each arc to ensure the connectivity between s and t. Our development is done on a directed graph, but it can be extended to undirected graphs and to similar games defined on the nodes of a graph.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice hall, Upper Saddle River (1993)

    MATH  Google Scholar 

  2. Aziz, H., Sørensen, T.B.: Path coalitional games, arXiv preprint arXiv:1103.3310 (2011)

  3. Chvatal, V.: Linear Programming. Macmillan, London (1983)

    MATH  Google Scholar 

  4. Deng, X., Fang, Q., Sun, X.: Finding nucleolus of flow game. J. Comb. Optim. 18, 64–86 (2009)

    Article  MathSciNet  Google Scholar 

  5. Elkind, E., Pasechnik, D.: Computing the nucleolus of weighted voting games. In: Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and Applied Mathematics, pp. 327–335 (2009)

    Google Scholar 

  6. Faigle, U., Kern, W., Kuipers, J.: Note computing the nucleolus of min-cost spanning tree games is NP-hard. Int. J. Game Theory 27, 443–450 (1998)

    Article  Google Scholar 

  7. Fang, Q., Li, B., Shan, X., Sun, X.: The least-core and nucleolus of path cooperative games. In: Xu, D., Du, D., Du, D. (eds.) COCOON 2015. LNCS, vol. 9198, pp. 70–82. Springer, Cham (2015). doi:10.1007/978-3-319-21398-9_6

    Chapter  Google Scholar 

  8. Fragnelli, V., Garcia-Jurado, I., Mendez-Naya, L.: On shortest path games. Math. Methods Oper. Res. 52, 251–264 (2000)

    Article  MathSciNet  Google Scholar 

  9. Gillies, D.B.: Solutions to general non-zero-sum games. Contrib. Theory Games 4, 47–85 (1959)

    MathSciNet  MATH  Google Scholar 

  10. Goldberg, A.V., Tarjan, R.E.: Finding minimum-cost circulations by canceling negative cycles. J. ACM (JACM) 36, 873–886 (1989)

    Article  MathSciNet  Google Scholar 

  11. Hartmann, M., Orlin, J.B.: Finding minimum cost to time ratio cycles with small integral transit times. Networks 23, 567–574 (1993)

    Article  MathSciNet  Google Scholar 

  12. Kalai, E., Zemel, E.: Generalized network problems yielding totally balanced games. Oper. Res. 30, 998–1008 (1982)

    Article  Google Scholar 

  13. Kern, W., Paulusma, D.: Matching games: the least core and the nucleolus. Math. Oper. Res. 28, 294–308 (2003)

    Article  MathSciNet  Google Scholar 

  14. Kopelowitz, A.: Computation of the kernels of simple games and the nucleolus of n-person games. Technical report, DTIC Document (1967)

    Google Scholar 

  15. Megiddo, N.: Computational complexity of the game theory approach to cost allocation for a tree. Math. Oper. Res. 3, 189–196 (1978)

    Article  MathSciNet  Google Scholar 

  16. Potters, J., Reijnierse, H., Biswas, A.: The nucleolus of balanced simple flow networks. Games Econ. Behav. 54, 205–225 (2006)

    Article  MathSciNet  Google Scholar 

  17. Schmeidler, D.: The nucleolus of a characteristic function game. SIAM J. Appl. Math. 17, 1163–1170 (1969)

    Article  MathSciNet  Google Scholar 

  18. Solymosi, T., Raghavan, T.E.: An algorithm for finding the nucleolus of assignment games. Int. J. Game Theory 23, 119–143 (1994)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Barahona .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Baïou, M., Barahona, F. (2017). On the Nucleolus of Shortest Path Games. In: Bilò, V., Flammini, M. (eds) Algorithmic Game Theory. SAGT 2017. Lecture Notes in Computer Science(), vol 10504. Springer, Cham. https://doi.org/10.1007/978-3-319-66700-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66700-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66699-0

  • Online ISBN: 978-3-319-66700-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics