Abstract
A total domatic k-partition of a graph is a partition of its vertex set into k subsets such that each intersects the open neighborhood of each vertex. The maximum k for which a total domatic k-partition exists is known as the total domatic number of a graph G, denoted by \(d_t(G)\). We extend considerably the known hardness results by showing it is \(\textsc {NP}\)-complete to decide whether \(d_t(G) \ge 3\) where G is a bipartite planar graph of bounded maximum degree. Similarly, for every \(k \ge 3\), it is \(\textsc {NP}\)-complete to decide whether \(d_t(G) \ge k\), where G is a split graph or k-regular. In particular, these results complement recent combinatorial results regarding \(d_t(G)\) on some of these graph classes by showing that the known results are, in a sense, best possible. Finally, for general n-vertex graphs, we show the problem is solvable in \(2^n n^{O(1)}\) time, and derive even faster algorithms for special graph classes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abbas, W., Egerstedt, M., Liu, C.H., Thomas, R., Whalen, P.: Deploying robots with two sensors in \(K_{1,6}\)-free graphs. J. Graph Theor. 82(3), 236–252 (2016)
Akbari, S., Motiei, M., Mozaffari, S., Yazdanbod, S.: Cubic graphs with total domatic number at least two. arXiv preprint arXiv:1512.04748 (2015)
Björklund, A., Husfeldt, T., Koivisto, M.: Set partitioning via inclusion-exclusion. SIAM J. Comput. 39(2), 546–563 (2009)
Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial kernels. J. Comput. Syst. Sci. 75(8), 423–434 (2009)
Bollobás, B., Cockayne, E.J.: Graph-theoretic parameters concerning domination, independence, and irredundance. J. Graph Theor. 3(3), 241–249 (1979)
Chen, B., Kim, J.H., Tait, M., Verstraete, J.: On coupon colorings of graphs. Discr. Appl. Math. 193, 94–101 (2015)
Cockayne, E.J., Dawes, R.M., Hedetniemi, S.T.: Total domination in graphs. Networks 10(3), 211–219 (1980)
Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameter. Algorithms. Springer, Heidelberg (2015)
Dai, F., Wu, J.: An extended localized algorithm for connected dominating set formation in ad hoc wireless networks. IEEE Trans. Parallel Distrib. Syst. 15(10), 908–920 (2004)
Diestel, R.: Graph Theory. Springer, Heidelberg (2010)
Fomin, F.V., Grandoni, F., Pyatkin, A.V., Stepanov, A.A.: Combinatorial bounds via measure and conquer: bounding minimal dominating sets and applications. ACM Trans. Algorithms 5(1), 9:1–9:17 (2008)
Garey, M., Johnson, D., Stockmeyer, L.: Some simplified NP-complete graph problems. Theor. Comput. Sci. 1(3), 237–267 (1976)
Gaspers, S., Lee, E.: Faster graph coloring in polynomial space. ArXiv e-prints arXiv:1607.06201 (2016)
Goddard, W., Henning, M.A.: Thoroughly distributed colorings. arXiv preprint arXiv:1609.09684 (2016)
Guruswami, V., Lee, E.: Strong inapproximability results on balanced rainbow-colorable hypergraphs. In: Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 822–836. SIAM (2015)
Han, B., Jia, W.: Clustering wireless ad hoc networks with weakly connected dominating set. J. Parallel Distrib. Comput. 67(6), 727–737 (2007)
Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Domination in Graphs: Advanced Topics. Marcel Dekker Inc., New York (1998)
Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of Domination in Graphs. CRC Press, Boca Raton (1998)
Heggernes, P., Telle, J.A.: Partitioning graphs into generalized dominating sets. Nordic J. Comput. 5(2), 128–142 (1998)
Henning, M.A.: A survey of selected recent results on total domination in graphs. Discr. Math. 309(1), 32–63 (2009)
Henning, M.A., Yeo, A.: 2-colorings in \(k\)-regular \(k\)-uniform hypergraphs. Eur. J. Comb. 34(7), 1192–1202 (2013)
Henning, M.A., Yeo, A.: Total Domination in Graphs. Springer, New York (2013)
Kaplan, H., Shamir, R.: The domatic number problem on some perfect graph families. Inf. Process. Lett. 49(1), 51–56 (1994)
Leven, D., Galil, Z.: NP-completeness of finding the chromatic index of regular graphs. J. Algorithms 4(1), 35–44 (1983)
Mahadev, N.V.R., Peled, U.N.: Threshold Graphs and Related Topics, vol. 56. Elsevier, Amsterdam (1995)
Nederlof, J., van Rooij, J.M.M., van Dijk, T.C.: Inclusion/exclusion meets measure and conquer. Algorithmica 69(3), 685–740 (2014)
Pfaff, J., Laskar, R., Hedetniemi, S.T.: NP-completeness of total and connected domination and irredundance for bipartite graphs. Technical report, Clemson University, Department of Mathematical Sciences 428 (1983)
Poon, S.-H., Yen, W.C.-K., Ung, C.-T.: Domatic partition on several classes of graphs. In: Lin, G. (ed.) COCOA 2012. LNCS, vol. 7402, pp. 245–256. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31770-5_22
Rooij, J.M.M., Bodlaender, H.L., Rossmanith, P.: Dynamic programming on tree decompositions using generalised fast subset convolution. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 566–577. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04128-0_51
Shi, Y., Wei, M., Yue, J., Zhao, Y.: Coupon coloring of some special graphs. J. Comb. Optim. 33(1), 156–164 (2017)
Stojmenovic, I., Seddigh, M., Zunic, J.: Dominating sets and neighbor elimination-based broadcasting algorithms in wireless networks. IEEE Trans. Parallel Distrib. Syst. 13(1), 14–25 (2002)
Zelinka, B.: Total domatic number of cacti. Math. Slovaca 38(3), 207–214 (1988)
Zelinka, B.: Total domatic number and degrees of vertices of a graph. Math. Slovaca 39(1), 7–11 (1989)
Zelinka, B.: Domination in generalized Petersen graphs. Czech. Math. J. 52(1), 11–16 (2002)
Acknowledgments
This work was supported in part by the Academy of Finland, under Grant 276864 (M.K.), and by the Emil Aaltonen Foundation, under Grant 160138 N (J.L.).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Koivisto, M., Laakkonen, P., Lauri, J. (2017). NP-completeness Results for Partitioning a Graph into Total Dominating Sets. In: Cao, Y., Chen, J. (eds) Computing and Combinatorics. COCOON 2017. Lecture Notes in Computer Science(), vol 10392. Springer, Cham. https://doi.org/10.1007/978-3-319-62389-4_28
Download citation
DOI: https://doi.org/10.1007/978-3-319-62389-4_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-62388-7
Online ISBN: 978-3-319-62389-4
eBook Packages: Computer ScienceComputer Science (R0)