Abstract
Recent biomedical research studies are focused in the mechanisms by which misfolded proteins lead to the generation of oxidative stress in the form of reactive oxygen species (ROS), often implicated in neurodegenerative diseases and aging. Moreover, biological experiments are designed to investigate how proteostasis depends on the balance between the folding capacity of chaperone networks and the continuous flux of potentially nonnative proteins. Nevertheless, biological experimental methods can examine the protein folding quality control mechanisms only in individual cells, but not in a multicellular level. Formal models offer a dynamic form of modelling, which allows to explore various parameter values in an integrated time-dependent system. This paper aims to present a formal approach of a mathematical descriptive model using as example a representation of a known molecular chaperone system and its relation to diseases associated to protein misfolding and neurodegeneration.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Muntau, A.C., J. Leandro, M. Staudigl, F. Mayer, S.W. Gersting. 2014. Innovative strategies to treat protein misfolding in inborn errors of metabolism: Pharmacological chaperones and proteostasis regulators. Journal of Inherited Metabolic Disease 37(4): 505–523.
Morimoto, R.I., and A.M. Cuervo. 2014. Proteostasis and the aging proteome in health and disease. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences 69(Suppl 1): S33–S38.
Hipp, M.S., S.H. Park, and F.U. Hartl. 2014. Proteostasis impairment in protein-misfolding and-aggregation diseases. Trends in Cell Biology 24(9): 506–514.
Hartl, F.U., A. Bracher, and M. Hayer-Hartl. 2011. Molecular chaperones in protein folding and proteostasis. Nature 475(7356): 324–332.
Dobson, C.M., A. Šali, M. Karplus. 1998. Protein folding: a perspective from theory and experiment. Angewandte Chemie International Edition 37(7): 868–893.
Kim, Y.E., M.S. Hipp, A. Bracher, M. Hayer-Hartl, and F. Ulrich Hartl. 2013. Molecular chaperone functions in protein folding and proteostasis. Annual Review of Biochemistry 82: 323–355.
Witt, S.N. (ed). 2011. Protein Chaperones and Protection from Neurodegenerative Diseases, pp. 1–427. Hoboken: Wiley.
Kessel, A., and N. Ben-Tal. 2010. Introduction to Proteins: Structure, Function, and Motion. Boca Raton: CRC Press.
Garrett, R.H., and C.M. Grisham. 2002. Principles of Biochemistry: With a Human Focus. Pacific Grove: Brooks/Cole/Thomson Learning.
Smith, H.L., W. Li, and M.E. Cheetham. 2015. Molecular chaperones and neuronal proteostasis. Seminars in Cell & Developmental Biology 40: 142–152. doi:10.1016/j.semcdb.2015.03.003.
Ou, J.R., M.S. Tan, A.M. Xie, J.T. Yu, and L. Tan. 2014. Heat shock protein 90 in Alzheimer’s disease. BioMed Research International 2014: Article ID 796869, 7 p. doi:10.1155/2014/796869.
Mayer, M., and B. Bukau. 2005. Hsp70 chaperones: cellular functions and molecular mechanism. Cellular and Molecular Life Sciences 62(6): 670–684.
Balchin, D., M. Hayer-Hartl, and F.U. Hartl. 2016. In vivo aspects of protein folding and quality control. Science 353(6294): aac4354.
Vabulas, R.M., S. Raychaudhuri, M. Hayer-Hartl, and F.U. Hartl. 2010. Protein folding in the cytoplasm and the heat shock response. Cold Spring Harbor Perspectives in Biology 2(12): a004390.
Kopito, R.R., and D. Ron. 2000. Conformational disease. Nature Cell Biology 2(11): E207–E209.
Rao, R.V., and D.E. Bredesen. 2004. Misfolded proteins, endoplasmic reticulum stress and neurodegeneration. Current Opinion in Cell Biology 16(6): 653–662.
Bertolotti, A., Y. Zhang, L.M. Hendershot, H.P. Harding, and D. Ron. 2000. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nature Cell Biology 2(6): 326–332.
Araki, K., and K. Nagata. 2012. Protein folding and quality control in the ER. Cold Spring Harbor Perspectives in Biology 4(8): a015438.
Labbadia, J., and R.I. Morimoto. 2015. The biology of proteostasis in aging and disease. Annual Review of Biochemistry 84: 435.
Anckar, J., and L. Sistonen. 2011. Regulation of hsf1 function in the heat stress response: Implications in aging and disease. Annual Review of Biochemistry 80: 1089–1115.
Walter, P., and D. Ron. 2011. The unfolded protein response: from stress pathway to homeostatic regulation. Science 334(6059): 1081–1086.
Haynes, C.M., and D. Ron. 2010. The mitochondrial UPR–protecting organelle protein homeostasis. Journal of Cell Science 123(22): 3849–3855.
Saez, I., and D. Vilchez. 2014. The mechanistic links between proteasome activity, aging and agerelated diseases. Current Genomics 15(1): 38–51.
Vilchez, D., I. Saez, and A. Dillin. 2014. The role of protein clearance mechanisms in organismal ageing and age-related diseases. Nature Communications 5.
Morimoto, R.I. 2008. Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes & Development 22(11): 1427–1438.
Kampinga, H.H., and E.A. Craig. 2010. The hsp70 chaperone machinery: J proteins as drivers of functional specificity. Nature Reviews Molecular Cell Biology 11(8): 579–592.
Ali, Y.O., B.M. Kitay, and R.G.Zhai. 2010. Dealing with misfolded proteins: Examining the neuroprotective role of molecular chaperones in neurodegeneration. Molecules 15(10): 6859–6887.
Gong, Y., Y. Kakihara, N. Krogan, J. Greenblatt, A. Emili, Z. Zhang, and W.A. Houry. 2009. An atlas of chaperone–protein interactions in saccharomyces cerevisiae: implications to protein folding pathways in the cell. Molecular Systems Biology 5(1): 275.
Chiti, F., and C.M. Dobson. 2006. Protein misfolding, functional amyloid, and human disease. Annual Review of Biochemistry 75: 333–366.
Calabrese, V., C. Cornelius, A.T. Dinkova-Kostova, E.J. Calabrese, and M.P. Mattson. 2010. Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxidants & Redox Signaling 13(11): 1763–1811.
Kaushik, S., and A.M. Cuervo. 2012. Chaperone-mediated autophagy: A unique way to enter the lysosome world. Trends in Cell Biology 22(8): 407–417.
Arndt, V., N. Dick, R. Tawo, M. Dreiseidler, D. Wenzel, M. Hesse, D.O. Fürst, P. Saftig, R. Saint, B.K. Fleischmann, et al. 2010. Chaperone-assisted selective autophagy is essential for muscle maintenance. Current Biology 20(2): 143–148.
Gregersen, N., P. Bross, M.M. Jorgensen. 2005. Protein folding and misfolding: the role of cellular protein quality control systems in inherited disorders. In: The Online Metabolic and Molecular Bases of Inherited Disease (OMMBID). ed. Valle, D., A.L. Beaudet, B. Vogelstein, K.W. Kinzler, S.E. Antonarakis, A. Ballabio. General Themes. Mc-Graw Hill.
Hartl, F.U., and M. Hayer-Hartl. Molecular chaperones in the cytosol: From nascent chain to folded protein. Science 295(5561): 1852–1858 (2002).
Tapley, T.L., T.M. Franzmann, S. Chakraborty, U. Jakob, and J.C. Bardwell. 2010. Protein refolding by pH-triggered chaperone binding and release. Proceedings of the National Academy of Sciences 107(3): 1071–1076.
Flaherty, K.M., D.B. McKay, W. Kabsch, K.C. Holmes. 1991. Similarity of the three-dimensional structures of actin and the atpase fragment of a 70-kda heat shock cognate protein. Proceedings of the National Academy of Sciences 88(11): 5041–5045.
Flaherty, K.M., C. DeLuca-Flaherty, D.B. McKay, et al. 1990. Three-dimensional structure of the atpase fragment of a 70 k heat-shock cognate protein. Nature 346(6285): 623–628.
Meimaridou, E., S.B. Gooljar, J.P. Chapple. 2009. From hatching to dispatching: The multiple cellular roles of the hsp70 molecular chaperone machinery. Journal of Molecular Endocrinology 42(1): 1–9.
Assimon, V.A., A.T. Gillies, J.N. Rauch, and J.E Gestwicki. 2013. Hsp70 protein complexes as drug targets. Current Pharmaceutical Design 19(3): 404–417.
Calloni, G., T. Chen, S.M. Schermann, H.C. Chang, P. Genevaux, F. Agostini, G.G. Tartaglia, M. Hayer-Hartl, F.U. Hartl. 2012. Dnak functions as a central hub in the E. coli chaperone network. Cell Reports 1(3): 251–264.
Siegenthaler, R.K., and P. Christen. 2006. Tuning of dnak chaperone action by nonnative protein sensor DnaJ and thermosensor GrpE. Journal of Biological Chemistry 281(45): 34448–34456.
Gething, M.J. 1997. Guidebook to molecular chaperones and protein-folding catalysts. Oxford: Oxford University Press.
Mayer, M.P. 2013. Hsp70 chaperone dynamics and molecular mechanism. Trends in Biochemical Sciences 38(10): 507–514.
Young, J.C. 2010. Mechanisms of the hsp70 chaperone system this paper is one of a selection of papers published in this special issue entitled “Canadian Society of Biochemistry, Molecular & Cellular Biology 52nd Annual Meeting-Protein Folding: Principles and Diseases” and has undergone the journal’s usual peer review process. Biochemistry and Cell Biology 88(2): 291–300.
Kellner, R., H. Hofmann, A. Barducci, B. Wunderlich, D. Nettels, and B. Schuler. 2014. Single-molecule spectroscopy reveals chaperone-mediated expansion of substrate protein. Proceedings of the National Academy of Sciences 111(37): 13355–13360. doi:10.1073/pnas.1407086111.
Siegenthaler, R.K., J. Grimshaw, and P. Christen. 2004. Immediate response of the Dnak molecular chaperone system to heat shock. FEBS Letters 562(1–3): 105–110.
Hucka, M., A. Finney, H.M. Sauro, H. Bolouri, J.C. Doyle, H. Kitano, A.P. Arkin, B.J. Bornstein, D. Bray, A. Cornish-Bowden, et al. 2003. The systems biology markup language (SBML): A medium for representation and exchange of biochemical network models. Bioinformatics 19(4): 524–531.
Proctor, C.J., C. Sőti, R.J. Boys, C.S. Gillespie, D.P. Shanley, D.J. Wilkinson, T.B. Kirkwood. 2005. Modelling the actions of chaperones and their role in ageing. Mechanisms of Ageing and Development 126(1): 119–131.
Goldberg, A.L. 2003. Protein degradation and protection against misfolded or damaged proteins. Nature 426(6968): 895–899.
Hartl, F.U. 2015. Molecular chaperones: Guardians of the proteome. Journal of Neurochemistry 134: PL02, 2–2.
Fulda, S., A.M. Gorman, O. Hori, and A. Samali. 2010. Cellular stress responses: Cell survival and cell death. International Journal of Cell Biology 10: 1–23.
Friguet, B. 2006. Oxidized protein degradation and repair in ageing and oxidative stress. FEBS Letters 580(12): 2910–2916.
Morley, J.F., H.R. Brignull, J.J. Weyers, R.I. Morimoto. 2002. The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in Caenorhabditis elegans. Proceedings of the National Academy of Sciences 99(16): 10417–10422.
David, D.C., N. Ollikainen, J.C. Trinidad, M.P. Cary, A.L. Burlingame, and C. Kenyon. 2010. Widespread protein aggregation as an inherent part of aging in C. elegans. PLoS Biology 8(8): e1000450.
Olzscha, H., S.M. Schermann, A.C. Woerner, S. Pinkert, M.H. Hecht, G.G. Tartaglia, M. Vendruscolo, M. Hayer-Hartl, F.U. Hartl. 2011. Vabulas, R.M.: Amyloid-like aggregates sequester numerous metastable proteins with essential cellular functions. Cell 144(1): 67–78.
López-Otín, C., M.A. Blasco, L. Partridge, M. Serrano, and G. Kroemer. 2013. The hallmarks of aging. Cell 153(6): 1194–1217.
Söti, C., and P. Csermely. 2002. Chaperones and aging: role in neurodegeneration and in other civilizational diseases. Neurochemistry International 41(6): 383–389.
Verbeke, P., J. Fonager, B.F. Clark, and S.I. Rattan. 2001. Heat shock response and ageing: mechanisms and applications. Cell Biology International 25(9): 845–857.
Leak, R.K. 2014. Heat shock proteins in neurodegenerative disorders and aging. Journal of Cell Communication and Signaling 8(4): 293–310.
Perri, E.R., C.J. Thomas, S. Parakh, D.M. Spencer, J.D. Atkin. 2016. The unfolded protein response and the role of protein disulfide isomerase in neurodegeneration. Frontiers in Cell and Developmental Biology 3: 80.
Tsai, Y.C., and A.M. Weissman. 2010. The unfolded protein response, degradation from the endoplasmic reticulum, and cancer. Genes & Cancer 1(7): 764–778.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Theocharopoulou, G., Bobori, C., Vlamos, P. (2017). Formal Models of Biological Systems. In: Vlamos, P. (eds) GeNeDis 2016. Advances in Experimental Medicine and Biology, vol 988. Springer, Cham. https://doi.org/10.1007/978-3-319-56246-9_27
Download citation
DOI: https://doi.org/10.1007/978-3-319-56246-9_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-56245-2
Online ISBN: 978-3-319-56246-9
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)