Nothing Special   »   [go: up one dir, main page]

Skip to main content

Formal Models of Biological Systems

  • Conference paper
  • First Online:
GeNeDis 2016

Abstract

Recent biomedical research studies are focused in the mechanisms by which misfolded proteins lead to the generation of oxidative stress in the form of reactive oxygen species (ROS), often implicated in neurodegenerative diseases and aging. Moreover, biological experiments are designed to investigate how proteostasis depends on the balance between the folding capacity of chaperone networks and the continuous flux of potentially nonnative proteins. Nevertheless, biological experimental methods can examine the protein folding quality control mechanisms only in individual cells, but not in a multicellular level. Formal models offer a dynamic form of modelling, which allows to explore various parameter values in an integrated time-dependent system. This paper aims to present a formal approach of a mathematical descriptive model using as example a representation of a known molecular chaperone system and its relation to diseases associated to protein misfolding and neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Muntau, A.C., J. Leandro, M. Staudigl, F. Mayer, S.W. Gersting. 2014. Innovative strategies to treat protein misfolding in inborn errors of metabolism: Pharmacological chaperones and proteostasis regulators. Journal of Inherited Metabolic Disease 37(4): 505–523.

    Article  CAS  PubMed  Google Scholar 

  2. Morimoto, R.I., and A.M. Cuervo. 2014. Proteostasis and the aging proteome in health and disease. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences 69(Suppl 1): S33–S38.

    Article  CAS  PubMed Central  Google Scholar 

  3. Hipp, M.S., S.H. Park, and F.U. Hartl. 2014. Proteostasis impairment in protein-misfolding and-aggregation diseases. Trends in Cell Biology 24(9): 506–514.

    Article  CAS  PubMed  Google Scholar 

  4. Hartl, F.U., A. Bracher, and M. Hayer-Hartl. 2011. Molecular chaperones in protein folding and proteostasis. Nature 475(7356): 324–332.

    Article  CAS  PubMed  Google Scholar 

  5. Dobson, C.M., A. Šali, M. Karplus. 1998. Protein folding: a perspective from theory and experiment. Angewandte Chemie International Edition 37(7): 868–893.

    Article  Google Scholar 

  6. Kim, Y.E., M.S. Hipp, A. Bracher, M. Hayer-Hartl, and F. Ulrich Hartl. 2013. Molecular chaperone functions in protein folding and proteostasis. Annual Review of Biochemistry 82: 323–355.

    Article  CAS  PubMed  Google Scholar 

  7. Witt, S.N. (ed). 2011. Protein Chaperones and Protection from Neurodegenerative Diseases, pp. 1–427. Hoboken: Wiley.

    Google Scholar 

  8. Kessel, A., and N. Ben-Tal. 2010. Introduction to Proteins: Structure, Function, and Motion. Boca Raton: CRC Press.

    Book  Google Scholar 

  9. Garrett, R.H., and C.M. Grisham. 2002. Principles of Biochemistry: With a Human Focus. Pacific Grove: Brooks/Cole/Thomson Learning.

    Google Scholar 

  10. Smith, H.L., W. Li, and M.E. Cheetham. 2015. Molecular chaperones and neuronal proteostasis. Seminars in Cell & Developmental Biology 40: 142–152. doi:10.1016/j.semcdb.2015.03.003.

    Article  CAS  Google Scholar 

  11. Ou, J.R., M.S. Tan, A.M. Xie, J.T. Yu, and L. Tan. 2014. Heat shock protein 90 in Alzheimer’s disease. BioMed Research International 2014: Article ID 796869, 7 p. doi:10.1155/2014/796869.

  12. Mayer, M., and B. Bukau. 2005. Hsp70 chaperones: cellular functions and molecular mechanism. Cellular and Molecular Life Sciences 62(6): 670–684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Balchin, D., M. Hayer-Hartl, and F.U. Hartl. 2016. In vivo aspects of protein folding and quality control. Science 353(6294): aac4354.

    Google Scholar 

  14. Vabulas, R.M., S. Raychaudhuri, M. Hayer-Hartl, and F.U. Hartl. 2010. Protein folding in the cytoplasm and the heat shock response. Cold Spring Harbor Perspectives in Biology 2(12): a004390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kopito, R.R., and D. Ron. 2000. Conformational disease. Nature Cell Biology 2(11): E207–E209.

    Article  CAS  PubMed  Google Scholar 

  16. Rao, R.V., and D.E. Bredesen. 2004. Misfolded proteins, endoplasmic reticulum stress and neurodegeneration. Current Opinion in Cell Biology 16(6): 653–662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bertolotti, A., Y. Zhang, L.M. Hendershot, H.P. Harding, and D. Ron. 2000. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nature Cell Biology 2(6): 326–332.

    Article  CAS  PubMed  Google Scholar 

  18. Araki, K., and K. Nagata. 2012. Protein folding and quality control in the ER. Cold Spring Harbor Perspectives in Biology 4(8): a015438.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Labbadia, J., and R.I. Morimoto. 2015. The biology of proteostasis in aging and disease. Annual Review of Biochemistry 84: 435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Anckar, J., and L. Sistonen. 2011. Regulation of hsf1 function in the heat stress response: Implications in aging and disease. Annual Review of Biochemistry 80: 1089–1115.

    Article  CAS  PubMed  Google Scholar 

  21. Walter, P., and D. Ron. 2011. The unfolded protein response: from stress pathway to homeostatic regulation. Science 334(6059): 1081–1086.

    Article  CAS  PubMed  Google Scholar 

  22. Haynes, C.M., and D. Ron. 2010. The mitochondrial UPR–protecting organelle protein homeostasis. Journal of Cell Science 123(22): 3849–3855.

    Article  CAS  PubMed  Google Scholar 

  23. Saez, I., and D. Vilchez. 2014. The mechanistic links between proteasome activity, aging and agerelated diseases. Current Genomics 15(1): 38–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vilchez, D., I. Saez, and A. Dillin. 2014. The role of protein clearance mechanisms in organismal ageing and age-related diseases. Nature Communications 5.

    Google Scholar 

  25. Morimoto, R.I. 2008. Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes & Development 22(11): 1427–1438.

    Article  CAS  Google Scholar 

  26. Kampinga, H.H., and E.A. Craig. 2010. The hsp70 chaperone machinery: J proteins as drivers of functional specificity. Nature Reviews Molecular Cell Biology 11(8): 579–592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ali, Y.O., B.M. Kitay, and R.G.Zhai. 2010. Dealing with misfolded proteins: Examining the neuroprotective role of molecular chaperones in neurodegeneration. Molecules 15(10): 6859–6887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gong, Y., Y. Kakihara, N. Krogan, J. Greenblatt, A. Emili, Z. Zhang, and W.A. Houry. 2009. An atlas of chaperone–protein interactions in saccharomyces cerevisiae: implications to protein folding pathways in the cell. Molecular Systems Biology 5(1): 275.

    PubMed  PubMed Central  Google Scholar 

  29. Chiti, F., and C.M. Dobson. 2006. Protein misfolding, functional amyloid, and human disease. Annual Review of Biochemistry 75: 333–366.

    Article  CAS  PubMed  Google Scholar 

  30. Calabrese, V., C. Cornelius, A.T. Dinkova-Kostova, E.J. Calabrese, and M.P. Mattson. 2010. Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxidants & Redox Signaling 13(11): 1763–1811.

    Article  CAS  Google Scholar 

  31. Kaushik, S., and A.M. Cuervo. 2012. Chaperone-mediated autophagy: A unique way to enter the lysosome world. Trends in Cell Biology 22(8): 407–417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Arndt, V., N. Dick, R. Tawo, M. Dreiseidler, D. Wenzel, M. Hesse, D.O. Fürst, P. Saftig, R. Saint, B.K. Fleischmann, et al. 2010. Chaperone-assisted selective autophagy is essential for muscle maintenance. Current Biology 20(2): 143–148.

    Article  CAS  PubMed  Google Scholar 

  33. Gregersen, N., P. Bross, M.M. Jorgensen. 2005. Protein folding and misfolding: the role of cellular protein quality control systems in inherited disorders. In: The Online Metabolic and Molecular Bases of Inherited Disease (OMMBID). ed. Valle, D., A.L. Beaudet, B. Vogelstein, K.W. Kinzler, S.E. Antonarakis, A. Ballabio. General Themes. Mc-Graw Hill.

    Google Scholar 

  34. Hartl, F.U., and M. Hayer-Hartl. Molecular chaperones in the cytosol: From nascent chain to folded protein. Science 295(5561): 1852–1858 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Tapley, T.L., T.M. Franzmann, S. Chakraborty, U. Jakob, and J.C. Bardwell. 2010. Protein refolding by pH-triggered chaperone binding and release. Proceedings of the National Academy of Sciences 107(3): 1071–1076.

    Article  CAS  Google Scholar 

  36. Flaherty, K.M., D.B. McKay, W. Kabsch, K.C. Holmes. 1991. Similarity of the three-dimensional structures of actin and the atpase fragment of a 70-kda heat shock cognate protein. Proceedings of the National Academy of Sciences 88(11): 5041–5045.

    Article  CAS  Google Scholar 

  37. Flaherty, K.M., C. DeLuca-Flaherty, D.B. McKay, et al. 1990. Three-dimensional structure of the atpase fragment of a 70 k heat-shock cognate protein. Nature 346(6285): 623–628.

    Article  CAS  PubMed  Google Scholar 

  38. Meimaridou, E., S.B. Gooljar, J.P. Chapple. 2009. From hatching to dispatching: The multiple cellular roles of the hsp70 molecular chaperone machinery. Journal of Molecular Endocrinology 42(1): 1–9.

    Article  CAS  PubMed  Google Scholar 

  39. Assimon, V.A., A.T. Gillies, J.N. Rauch, and J.E Gestwicki. 2013. Hsp70 protein complexes as drug targets. Current Pharmaceutical Design 19(3): 404–417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Calloni, G., T. Chen, S.M. Schermann, H.C. Chang, P. Genevaux, F. Agostini, G.G. Tartaglia, M. Hayer-Hartl, F.U. Hartl. 2012. Dnak functions as a central hub in the E. coli chaperone network. Cell Reports 1(3): 251–264.

    Article  CAS  PubMed  Google Scholar 

  41. Siegenthaler, R.K., and P. Christen. 2006. Tuning of dnak chaperone action by nonnative protein sensor DnaJ and thermosensor GrpE. Journal of Biological Chemistry 281(45): 34448–34456.

    Article  CAS  PubMed  Google Scholar 

  42. Gething, M.J. 1997. Guidebook to molecular chaperones and protein-folding catalysts. Oxford: Oxford University Press.

    Google Scholar 

  43. Mayer, M.P. 2013. Hsp70 chaperone dynamics and molecular mechanism. Trends in Biochemical Sciences 38(10): 507–514.

    Article  CAS  PubMed  Google Scholar 

  44. Young, J.C. 2010. Mechanisms of the hsp70 chaperone system this paper is one of a selection of papers published in this special issue entitled “Canadian Society of Biochemistry, Molecular & Cellular Biology 52nd Annual Meeting-Protein Folding: Principles and Diseases” and has undergone the journal’s usual peer review process. Biochemistry and Cell Biology 88(2): 291–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kellner, R., H. Hofmann, A. Barducci, B. Wunderlich, D. Nettels, and B. Schuler. 2014. Single-molecule spectroscopy reveals chaperone-mediated expansion of substrate protein. Proceedings of the National Academy of Sciences 111(37): 13355–13360. doi:10.1073/pnas.1407086111.

    Article  CAS  Google Scholar 

  46. Siegenthaler, R.K., J. Grimshaw, and P. Christen. 2004. Immediate response of the Dnak molecular chaperone system to heat shock. FEBS Letters 562(1–3): 105–110.

    Article  CAS  PubMed  Google Scholar 

  47. Hucka, M., A. Finney, H.M. Sauro, H. Bolouri, J.C. Doyle, H. Kitano, A.P. Arkin, B.J. Bornstein, D. Bray, A. Cornish-Bowden, et al. 2003. The systems biology markup language (SBML): A medium for representation and exchange of biochemical network models. Bioinformatics 19(4): 524–531.

    Article  CAS  PubMed  Google Scholar 

  48. Proctor, C.J., C. Sőti, R.J. Boys, C.S. Gillespie, D.P. Shanley, D.J. Wilkinson, T.B. Kirkwood. 2005. Modelling the actions of chaperones and their role in ageing. Mechanisms of Ageing and Development 126(1): 119–131.

    Article  CAS  PubMed  Google Scholar 

  49. Goldberg, A.L. 2003. Protein degradation and protection against misfolded or damaged proteins. Nature 426(6968): 895–899.

    Article  CAS  PubMed  Google Scholar 

  50. Hartl, F.U. 2015. Molecular chaperones: Guardians of the proteome. Journal of Neurochemistry 134: PL02, 2–2.

    Google Scholar 

  51. Fulda, S., A.M. Gorman, O. Hori, and A. Samali. 2010. Cellular stress responses: Cell survival and cell death. International Journal of Cell Biology 10: 1–23.

    Google Scholar 

  52. Friguet, B. 2006. Oxidized protein degradation and repair in ageing and oxidative stress. FEBS Letters 580(12): 2910–2916.

    Article  CAS  PubMed  Google Scholar 

  53. Morley, J.F., H.R. Brignull, J.J. Weyers, R.I. Morimoto. 2002. The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in Caenorhabditis elegans. Proceedings of the National Academy of Sciences 99(16): 10417–10422.

    Article  Google Scholar 

  54. David, D.C., N. Ollikainen, J.C. Trinidad, M.P. Cary, A.L. Burlingame, and C. Kenyon. 2010. Widespread protein aggregation as an inherent part of aging in C. elegans. PLoS Biology 8(8): e1000450.

    Google Scholar 

  55. Olzscha, H., S.M. Schermann, A.C. Woerner, S. Pinkert, M.H. Hecht, G.G. Tartaglia, M. Vendruscolo, M. Hayer-Hartl, F.U. Hartl. 2011. Vabulas, R.M.: Amyloid-like aggregates sequester numerous metastable proteins with essential cellular functions. Cell 144(1): 67–78.

    Article  CAS  PubMed  Google Scholar 

  56. López-Otín, C., M.A. Blasco, L. Partridge, M. Serrano, and G. Kroemer. 2013. The hallmarks of aging. Cell 153(6): 1194–1217.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Söti, C., and P. Csermely. 2002. Chaperones and aging: role in neurodegeneration and in other civilizational diseases. Neurochemistry International 41(6): 383–389.

    Article  PubMed  Google Scholar 

  58. Verbeke, P., J. Fonager, B.F. Clark, and S.I. Rattan. 2001. Heat shock response and ageing: mechanisms and applications. Cell Biology International 25(9): 845–857.

    Article  CAS  PubMed  Google Scholar 

  59. Leak, R.K. 2014. Heat shock proteins in neurodegenerative disorders and aging. Journal of Cell Communication and Signaling 8(4): 293–310.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Perri, E.R., C.J. Thomas, S. Parakh, D.M. Spencer, J.D. Atkin. 2016. The unfolded protein response and the role of protein disulfide isomerase in neurodegeneration. Frontiers in Cell and Developmental Biology 3: 80.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Tsai, Y.C., and A.M. Weissman. 2010. The unfolded protein response, degradation from the endoplasmic reticulum, and cancer. Genes & Cancer 1(7): 764–778.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgia Theocharopoulou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Theocharopoulou, G., Bobori, C., Vlamos, P. (2017). Formal Models of Biological Systems. In: Vlamos, P. (eds) GeNeDis 2016. Advances in Experimental Medicine and Biology, vol 988. Springer, Cham. https://doi.org/10.1007/978-3-319-56246-9_27

Download citation

Publish with us

Policies and ethics