Nothing Special   »   [go: up one dir, main page]

Skip to main content

Graphical Models for Preference Representation: An Overview

  • Conference paper
  • First Online:
Scalable Uncertainty Management (SUM 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9858))

Included in the following conference series:

Abstract

Representing preferences into a compact structure has become an important research topic. Graphical models are of special interest. Indeed, they facilitate elicitation, exhibit some form of independence, and serve as a basis for solving optimization and dominance queries about choices. The expressiveness of the representation setting and the complexity of answering queries are then central issues for each approach. This paper proposes an extensive overview of the main graphical models for preference representation and provides a comparative survey by emphasizing their main characteristics. We also indicate possible transformations between some of these models. We contrast qualitative models such as CP-nets and TCP-nets with quantitative ones such as GAI networks, UCP-nets, and Marginal utility nets, and advocate \(\pi \)-Pref nets, recently introduced by the authors, as an interesting compromise between the two types of models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings in ak-tree. J. Algebr. Discret. Methods 8(2), 277–284 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  2. Amor, N.B., Benferhat, S.: Graphoid properties of qualitative possibilistic independence relations. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 13(1), 59–96 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Amor, N.B., Dubois, D., Gouider, H., Prade, H.: Possibilistic conditional preference networks. In: Siegel, P., Kruse, R. (eds.) ECSQARU 2015. LNCS, vol. 9161, pp. 36–46. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  4. Boutilier, C., Bacchus, F., Brafman, R.I.: UCP-networks: a directed graphical representation of conditional utilities. In: Proceedings of UAI, pp. 56–64. Morgan Kaufmann Publishers Inc. (2001)

    Google Scholar 

  5. Boutilier, C., Brafman, R. I., Hoos, H., Poole, D.: Reasoning with conditional ceteris paribus preference statements. In: Proceedings of UAI, pp. 71–80 (1999)

    Google Scholar 

  6. Boutilier, C., Brafman, R., Domshlak, C., Hoos, H., Poole, D.: CP-nets: a tool for representing and reasoning with conditional ceteris paribus preference statements. J. Artif. Intell. Res. 21, 135–191 (2004)

    MathSciNet  MATH  Google Scholar 

  7. Brafman, R.I., Domshlak, C.: TCP-nets for preference-based product configuration. In: The Forth Workshop on Configuration (ECAI), pp. 101–106 (2002)

    Google Scholar 

  8. Brafman, R.I., Domshlak, C., Shimonyl, S.: On graphical modeling of preference and importance. J. Artif. Intell. Res. 25, 389–424 (2006)

    MathSciNet  MATH  Google Scholar 

  9. Brafman, R.I., Engel, Y.: Directional decomposition of multiattribute utility functions. In: Rossi, F., Tsoukias, A. (eds.) ADT 2009. LNCS, vol. 5783, pp. 192–202. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Brafman, R.I., Engel, Y.: Decomposed utility functions and graphical models for reasoning about preferences. In: Proceedings of 24th AAAI Conference on Artificial Intelligence, pp. 267–272 (2010)

    Google Scholar 

  11. Braziunas, D., Boutilier, C.: Local utility elicitation in GAI models. In: Proceedings of 21st Conference on Uncertainty in Artificial Intelligence, pp. 42–49 (2005)

    Google Scholar 

  12. Bigot, D., Zanuttini, B., H.F., Mengin, J.: Probabilistic conditional preference networks. In: Proceedings of 29th Conference on Uncertainty in Artificial Intelligence (2013)

    Google Scholar 

  13. Dubois, D., Prade, H., Touazi, F.: Conditional preference-nets, possibilistic logic, and the transitivity of priorities. In: Bramer, M., Petridis, M. (eds.) Research and Development in Intelligent Systems XXX, pp. 175–184. Springer, Switzerland (2013)

    Chapter  Google Scholar 

  14. Eichhorn, C., Fey, M., Kern-Isberner, G.: CP-and OCF-networks-a comparison. Fuzzy Sets Syst. 298, 109–127 (2016)

    Article  MathSciNet  Google Scholar 

  15. Engel, Y., Wellman, M.P.: CUI networks: a graphical representation for conditional utility independence. J. Artif. Intell. Res. 31, 83–112 (2008)

    MathSciNet  MATH  Google Scholar 

  16. Fishburn, P.C.: Utility theory for decision making. Technical report, DTIC Document (1970)

    Google Scholar 

  17. Goldsmith, J., Lang, J., Truszczynski, M., Wilson, N.: The computational complexity of dominance and consistency in CP-nets. J. Artif. Intell. Res. 33, 403–432 (2008)

    MathSciNet  MATH  Google Scholar 

  18. Gonzales, C., Perny, P.: GAI networks for utility elicitation. In: Proceedings of 9th International Conference on Principles of Knowledge Representation and Reasoning, pp. 224–234 (2004)

    Google Scholar 

  19. Gonzales, C., Perny, P.: GAI networks for decision making under certainty. In: IJCAI-Workshop on Advances in Preference Handling (2005)

    Google Scholar 

  20. Jensen, F.V., Lauritzen, S.L., Olesen, K.G.: Bayesian updating in causal probabilistic networks by local computations. Proc. Comput. Stat. Q. 4, 269–282 (1990)

    MathSciNet  MATH  Google Scholar 

  21. Kaci, S., Lang, J., Perny, P.: Représentation des préférences. In: Panorama de l’Intelligence Artificielle, vol. 1, pp. 181–214. Cépaduès éditions (2014)

    Google Scholar 

  22. Koriche, F., Zanuttini, B.: Learning conditional preference networks. Artif. Intell. 174(11), 685–703 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, California (1988)

    MATH  Google Scholar 

  24. Rossi, F., Venable, K., Walsh, T.: mCP-nets: representing and reasoning with preferences of multiple agents. In: Proceedings of 19th AAAI National Conference on Artificial Intelligence, pp. 729–734 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Héla Gouider .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Amor, N.B., Dubois, D., Gouider, H., Prade, H. (2016). Graphical Models for Preference Representation: An Overview. In: Schockaert, S., Senellart, P. (eds) Scalable Uncertainty Management. SUM 2016. Lecture Notes in Computer Science(), vol 9858. Springer, Cham. https://doi.org/10.1007/978-3-319-45856-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45856-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45855-7

  • Online ISBN: 978-3-319-45856-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics