Nothing Special   »   [go: up one dir, main page]

Skip to main content

Interfacing Physical and Cyber Worlds: A Big Data Perspective

  • Chapter
  • First Online:
Data Science and Big Data Computing

Abstract

With the increase in utilization and pervasiveness of smart gadgets, there is a rise in new application domains. For that reason, computational technologies are progressing very rapidly, and computations are becoming an essential part of our life. Cyber-physical systems (CPSs) are a new evolution in computing that are integrated with the real world along with the physical devices to provide control in real-time environments. CPS generally takes input through sensors and controls the physical system through cyber systems using actuators. Such systems are really complex and challenging as they control real environments. This necessitates a proper interfacing of physical and cyber domains. To this end, the data generated by physical devices is getting bigger and bigger that is collectively acknowledged as big data. The real challenge in interfacing cyber and physical domains is the efficient management of big data. Accordingly, this chapter discusses big data sources and the relevant computing paradigms. It also classifies and discusses the main phases of data management for interfacing CPS, viz., data acquisition, data preprocessing, storage, query processing, data analysis, and actuation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Buyya R, Yeo CS, Venugopal S, Broberg J, Brandic I (2009) Cloud computing and emerging IT platforms: vision, hype, and reality for delivering computing as the 5th utility. Futur Gener Comput Syst 25(6):599–616

    Article  Google Scholar 

  2. Wolf W (2009) Cyber-physical systems. Computer 3:88–89

    Article  Google Scholar 

  3. Baheti R, Gill H (2011) Cyber-physical systems. Impact Control Technol 12:161–166

    Google Scholar 

  4. Rajkumar R, Lee I, Sha L, Stankovic J (2010) Cyber-physical systems: the next computing revolution. In: Proceedings of the 47th design automation conference. ACM, pp 731–736

    Google Scholar 

  5. Shaikh FK, Zeadally S (2015) Mobile sensors in cyber-physical systems. Book Chapter in cyber physical system design with sensor networking technologies, IET, 2015 (to appear)

    Google Scholar 

  6. Wu FJ, Kao YF, Tseng YC (2011) From wireless sensor networks towards cyber physical systems. Pervasive Mob Comput 7(4):397–413

    Article  Google Scholar 

  7. Haque AS, Aziz SM, Rahman M (2014) Review of cyber-physical system in healthcare. Int J Distrib Sens Netw 2014:1–20

    Article  Google Scholar 

  8. Kim JE, Mosse D (2008) Generic framework for design, modeling and simulation of cyber physical systems. ACM SIGBED Rev 5:1

    Google Scholar 

  9. Bloomberg J (2013) The big data long tail. http://www.devx.com/blog/the-big-data-long-tail.html. Accessed 17 Jan 2015

  10. Kambatla K, Kollias G, Kumar V, Grama A (2014) Trends in big data analytics. J Parallel Distr Com 74(7):2561–2573

    Article  Google Scholar 

  11. Madden S (2012) From databases to big data. IEEE Internet Comput 3:4–6

    Article  Google Scholar 

  12. Rouse M (2015) 3Vs (volume, velocity & variety). http://whatis.techtarget.com/definition/3Vs. Accessed Apr 2015

  13. Hitachi Data Systems (2015) Capitalize on big data. http://www.hds.com/assets/pdf/hitachi-webtech-educational-series-capitalize-on-big-data.pdf. Accessed 20 Mar 2015

  14. Hurwitz J, Nugent A, Halper F, Kaufman M (2015) Structured data in a big data environment. www.dummies.com/howto/ content/structured-data-in-a-big-data-environment.html. Accessed 2 Apr 2015

  15. Shaikh FK, Zeadally S, Siddiqui F (2013) Energy efficient routing in wireless sensor networks. In: Next-generation wireless technologies. Springer, London, pp 131–157

    Google Scholar 

  16. Rouse M (2006) Wireless sensor networks. http://searchdatacenter.techtarget.com/definition/sensor-network. Accessed 20 Feb 2015

  17. Akyildiz IF, Vuran MC (2010) Wireless sensor networks, 4th edn. Wiley, New York

    Book  MATH  Google Scholar 

  18. Rios LG, Diguez JEAI (2014) Big data infrastructure for analyzing data generated by wireless sensor networks. In: IEEE international congress on big data (BigData Congress), 2014. IEEE, pp 816–823

    Google Scholar 

  19. Jardak C, Riihijärvi J, Oldewurtel F, Mähönen P (2010) Parallel processing of data from very large-scale wireless sensor networks. In: Proceedings of the 19th ACM international symposium on high performance distributed computing. ACM, pp 787–794

    Google Scholar 

  20. Fan T, Zhang X, Gao F (2013) Cloud storage solution for WSN in internet innovation union. Int J Database Theory Appl 6(3):49–58

    Google Scholar 

  21. Ahmed K, Gregory M (2011) Integrating wireless sensor networks with cloud computing. In: Seventh international conference on Mobile Ad-hoc and Sensor Networks (MSN), 2011. IEEE, pp 364–366

    Google Scholar 

  22. Kwak H, Lee C, Park H, Moon S (2010) What is Twitter, a social network or a news media?. In: Proceedings of the 19th international conference on world wide web. ACM, pp 591–600

    Google Scholar 

  23. Ellison NB, Steinfield C, Lampe C (2007) The benefits of Facebook “friends:” social capital and college students’ use of online social network sites. J Comput-Mediat Commun 12(4):1143–1168

    Article  Google Scholar 

  24. Gilbert E, Bakhshi S, Chang S, Terveen L (2013) I need to try this?: a statistical overview of pinterest. In: Proceedings of the SIGCHI conference on human factors in computing systems. ACM, pp 2427–2436

    Google Scholar 

  25. Shervington M (2015) What is google Plus? A complete user guide. http://www.martinshervington.com/what-is-google-plus/. Accessed 20 Apr 2015

  26. Hochman N, Schwartz R (2012) Visualizing instagram: tracing cultural visual rhythms. In: Proceedings of the workshop on Social Media Visualization (SocMedVis) in conjunction with the sixth international AAAI conference on Weblogs and Social Media (ICWSM–12), pp 6–9

    Google Scholar 

  27. Watson I, Mullen J, Smith-Spark L (2015) CNN. Nepal earthquake: death toll passes 4,800 as rescuers face challenges. http://edition.cnn.com/2015/04/28/asia/nepal-earthquake/. Accessed on 05 May 2015

  28. Ravilious K (2015) Nepal quake ‘followed historic pattern’. http://www.bbc.com/news/science-environment-32472310. Accessed on 28 Apr 2015

  29. Garg Y, Chatterjee N (2014) Sentiment analysis of Twitter feeds. In: Big data analytics. Springer International Publishing Switzerland, pp 33–52

    Google Scholar 

  30. Felemban E, Sheikh AA, Shaikh FK (2014) MMaPFlow: a crowd-sourcing based approach for mapping mass pedestrian flow. In: Proceedings of the 11th international conference on Mobile and Ubiquitous Systems: Computing, Networking and Services (MOBIQUITOUS ’14)

    Google Scholar 

  31. Yousefi S, Mousavi MS, Fathy M (2006) Vehicular ad hoc networks (VANETs): challenges and perspectives. In: 6th international conference on ITS telecommunications proceedings, 2006. IEEE, pp 761–766

    Google Scholar 

  32. Ali F, Shaikh FK, Ansari AQ, Mahoto NA, Felemban E (2015) Comparative analysis of VANET routing protocols- on placement of road side units. Int J Wirel Pers Commun, Springer, pp 1–14, 2015. doi:10.1007/s11277-015-2745-z

    Google Scholar 

  33. Zhang Y, Zhao J, Cao G (2010) Roadcast: a popularity aware content sharing scheme in vanets. ACM SIGMOBILE Mobile Comput Commun Rev 13(4):1–14

    Article  Google Scholar 

  34. Sutariya D, Pradhan SN (2010) Data dissemination techniques in vehicular ad hoc network. Int J Comput Appl 8(10):35–39

    Google Scholar 

  35. Dubey BB, Chauhan N, Kumar P (2010) A survey on data dissemination techniques used in VANETs. Int J Comput Appl 10(7):5–10

    Google Scholar 

  36. Talpur A, Baloch N, Bohra N, Shaikh FK, Felemban E (2014) Analyzing the impact of body postures and power on communication in WBAN. Procedia Comput Sci 32:894–899

    Article  Google Scholar 

  37. Khelil A, Shaikh FK, Sheikh AA, Felemban E, Bojan H (2014) DigiAID: a wearable health platform for automated self-tagging in emergency cases, In: 4th international conference on wireless Mobile Communication and Healthcare (Mobihealth), 2014 EAI, pp 296,299

    Google Scholar 

  38. Aziz Z, Qureshi UM, Shaikh FK, Bohra N, Khelil A, Felemban E (2015) Revisiting routing in wireless body area networks. In: Emerging communication technologies based on wireless sensor networks: current research and future applications. CRC Press (to appear)

    Google Scholar 

  39. TDWI Best Practices Report (2015) Managing big data. http://tdwi.org/research/2013/10/tdwi-best-practices-report-managing-big-data.aspx?tc=page0. Accessed 01 Mar 2015

  40. Dinh HT, Lee C, Niyato D, Wang P (2013) A survey of mobile cloud computing: architecture, applications, and approaches. Wirel Commun Mob Comput 13(18):1587–1611

    Article  Google Scholar 

  41. Agrawal D, Das S, El Abbadi A (2010) Big data and cloud computing: new wine or just new bottles? Proc VLDB Endowment 3(1–2):1647–1648

    Article  Google Scholar 

  42. Elazhary H (2014) Cloud computing for big data. MAGNT Res Rep 2(4):135–144

    Google Scholar 

  43. Gartner IT glossary (2013) Cloud computing. http://www.gartner.com/it-glossary/cloud-computing. Accessed 01 Apr 2015

  44. Rodero-Merino L, Vaquero LM, Gil V, Galán F, Fontán J, Montero RS, Llorente IM (2010) From infrastructure delivery to service management in clouds. Futur Gener Comput Syst 26(8):1226–1240

    Article  Google Scholar 

  45. Patidar S, Rane D, Jain P (2012) A survey paper on cloud computing. In: Second international conference on Advanced Computing & Communication Technologies (ACCT), 2012. IEEE, pp 394–398

    Google Scholar 

  46. Khajeh-Hosseini A, Sommerville I, Bogaerts J, Teregowda P (2011) Decision support tools for cloud migration in the enterprise. In: IEEE international conference on Cloud Computing (CLOUD), 2011. IEEE, pp 541–548

    Google Scholar 

  47. Hashem IAT, Yaqoob I, Anuar NB, Mokhtar S, Gani A, Khan SU (2015) The rise of “big data” on cloud computing: review and open research issues. Inf Syst 47:98–115

    Article  Google Scholar 

  48. Abadi DJ (2009) Data management in the cloud: limitations and opportunities. IEEE Data Eng Bull 32(1):3–12

    Google Scholar 

  49. Das S, Agrawal D, El Abbadi A (2009) Elastras: an elastic transactional data store in the cloud. USENIX HotCloud 2:7

    Google Scholar 

  50. Valduriez P (2009) Shared-memory architecture. In: Encyclopedia of database systems. Springer US, New York, pp 2638–2638

    Google Scholar 

  51. Jill Dyche (2015) Data as a service explained and defined. http://searchdatamanagement.techtarget.com/answer/Data-as-a-service-explained-and-defined Accessed on 20 Mar 2015

  52. Demirkan H, Delen D (2013) Leveraging the capabilities of service-oriented decision support systems: putting analytics and big data in cloud. Decis Support Syst 55(1):412–421

    Article  Google Scholar 

  53. Mathiprakasam M (2015) The road to analytics as a service. http://www.forbes.com/sites/oracle/2014/09/26/the-road-to-analytics-as-a-service/. Accessed on 20 Mar 2015

  54. Poovendran R (2010) Cyber–physical systems: close encounters between two parallel worlds [point of view]. Proc IEEE 98(8):1363–1366

    Article  Google Scholar 

  55. Shaikh FK, Zeadally S, Exposito E (2015) Enabling technologies for green internet of things. IEEE Syst J 99:1–12

    Article  Google Scholar 

  56. Rajhans A, Cheng SW, Schmerl B, Garlan D, Krogh BH, Agbi C, Bhave A (2009) An architectural approach to the design and analysis of cyber-physical systems. Electronic Communications of the EASST, 21:1–10

    Google Scholar 

  57. CPS Steering Group (2008) Cyber-physical systems executive summary. CPS Summit

    Google Scholar 

  58. Simmon E, Kim KS, Subrahmanian E, Lee R, de Vaulx F, Murakami Y, Zettsu K, Sriram RD (2013) A vision of cyber-physical cloud computing for smart networked systems. NIST, Gaithersburg

    Book  Google Scholar 

  59. Mokashi M, Alvi AS (2013) Data management in wireless sensor network: a survey. Int J Adv Res Comput Commun Eng 2:1380–1383

    Google Scholar 

  60. Padgavankar MH, Gupta SR (2014) Big data storage and challenges. Int J Comput Sci Inf Technol 5:2

    Google Scholar 

  61. Sathe S, Papaioannou TG, Jeung H, Aberer K (2013) A survey of model-based sensor data acquisition and management. In: Managing and mining sensor data. Springer US, New York, pp 9–50

    Chapter  Google Scholar 

  62. Aggarwal CC (2013) Managing and mining sensor data. Springer Science & Business Media, New York

    Book  Google Scholar 

  63. Chapman AD (2005) Principles and methods of data cleaning. GBIF, Copenhagen

    Google Scholar 

  64. Jeffery SR, Alonso G, Franklin MJ, Hong W, Widom J (2006) A pipelined framework for online cleaning of sensor data streams. IEEE, p 140

    Google Scholar 

  65. Elmenreich W (2002) Sensor fusion in time-triggered systems, Ph.D. thesis, Faculty of Informatics at the Vienna University of Technology, Austria. http://www.vmars.tuwien.ac.at/~wilfried/papers/elmenreich_Dissertation_sensorFusionInTimeTriggeredSystems.pdf

  66. Hall David L, Llinas J (1997) An introduction to multisensor data fusion. Proc IEEE 85(1):6–23

    Article  Google Scholar 

  67. Castanedo F (2013) A review of data fusion techniques. Sci World J 2013:1–19

    Article  Google Scholar 

  68. Kimura N, Latifi S (2005) A survey on data compression in wireless sensor networks. In: International conference on Information Technology: Coding and Computing (ITCC), 2005, vol. 2. IEEE, pp 8–13

    Google Scholar 

  69. Marcelloni F, Vecchio M (2008) A simple algorithm for data compression in wireless sensor networks. Commun Lett IEEE 12(6):411–413

    Article  Google Scholar 

  70. Agrawal R, Faloutsos C, Swami A (1993) Efficient similarity search in sequence databases. Springer, Berlin/Heidelberg, pp 69–84

    Google Scholar 

  71. Gandhi S, Nath S, Suri S, Liu J (2009) Gamps: compressing multi sensor data by grouping and amplitude scaling. In: Proceedings of the 2009 ACM SIGMOD international conference on management of data. ACM, pp 771–784

    Google Scholar 

  72. Wang L, Deshpande A (2008) Predictive modeling-based data collection in wireless sensor networks. In: Wireless sensor networks. Springer, Berlin/Heidelberg, pp 34–51

    Chapter  Google Scholar 

  73. Arion A, Jeung H, Aberer K (2011) Efficiently maintaining distributed model-based views on real-time data streams. In: Global Telecommunications Conference (GLOBECOM 2011). IEEE, pp 1–6

    Google Scholar 

  74. Xing K, Cheng X, Li J (2005) Location-centric storage for sensor networks. In: IEEE international conference on mobile adhoc and sensor systems conference. IEEE, p 10

    Google Scholar 

  75. Petit L, Nafaa A, Jurdak R (2009) Historical data storage for large scale sensor networks. In: Proceedings of the 5th French-speaking conference on mobility and ubiquity computing. ACM, pp 45–52

    Google Scholar 

  76. Diao Y, Ganesan D, Mathur G, Shenoy PJ (2007) Rethinking data management for storage-centric sensor networks. In: CIDR, vol. 7, pp 22–31

    Google Scholar 

  77. Dutta P, Culler DE, Shenker S (2007) Procrastination might lead to a longer and more useful life. In: The sixth workshop on Hot Topics in Networks (HotNets-VI) pp 1–7

    Google Scholar 

  78. Deshpande A, Madden S (2006) MauveDB: supporting model-based user views in database systems. In: Proceedings of the 2006 ACM SIGMOD international conference on management of data. ACM, pp 73–84

    Google Scholar 

  79. Kanagal B, Deshpande A (2008) Online filtering, smoothing and probabilistic modeling of streaming data. In: IEEE 24th international conference on Data Engineering, ICDE 2008. IEEE, pp 1160–1169

    Google Scholar 

  80. Bhattacharya A, Meka A, Singh AK (2007) Mist: distributed indexing and querying in sensor networks using statistical models. In: Proceedings of the 33rd international conference on very large data bases. VLDB Endowment, pp 854–865

    Google Scholar 

  81. Cugola G, Margara A (2012) Processing flows of information: from data stream to complex event processing. ACM Comput Surv (CSUR) 44(3):15

    Article  Google Scholar 

  82. Babcock B, Babu S, Datar M, Motwani R, Widom J (2002) Models and issues in data stream systems. In: Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on principles of database systems. ACM, pp 1–16

    Google Scholar 

  83. Luckham D (2002) The power of events, vol 204. Addison-Wesley, Reading

    Google Scholar 

  84. Golab L, Özsu MT (2003) Issues in data stream management. ACM Sigmod Rec 32(2):5–14

    Article  Google Scholar 

  85. Dunkel J (2009) On complex event processing for sensor networks. In: International symposium on autonomous decentralized systems, 2009. ISADS’09. IEEE, pp 1–6

    Google Scholar 

  86. Miller S (2013) Big data analytics. Podcasts at Singapore Management University, Available at: http://ink.library.smu.edu.sg/podcasts/8

  87. Big Data in the Cloud Converging Technologies-Intel (2014) http://www.intel.com/content/www/us/en/big-data/big-data-cloud-technologies-brief.html. Accessed on Apr 2015

  88. Tang LA, Yu X, Kim S, Han J, Peng WC, Sun Y, Gonzalez H, Seith S (2012) Multidimensional analysis of atypical events in cyber-physical data. In: IEEE 28th international conference on Data Engineering (ICDE), 2012. IEEE, pp 1025–1036

    Google Scholar 

  89. Tang LA, Yu X, Kim S, Han J, Peng WC, Sun Y, Leung A, La Porta T (2012) Multidimensional sensor data analysis in cyber-physical system: an atypical cube approach. Int J Distrib Sens Netw 2012:1–19

    Google Scholar 

  90. Yu X, Tang LA, Han J (2009) Filtering and refinement: a two-stage approach for efficient and effective anomaly detection. In: Ninth IEEE international conference on Data Mining, 2009. ICDM’09. IEEE, pp 617–626

    Google Scholar 

  91. Tang LA, Yu X, Kim S, Han J, Hung CC, Peng WC (2010) Tru-alarm: trustworthiness analysis of sensor networks in cyber-physical systems. In: IEEE 10th international conference on Data Mining (ICDM), 2010. IEEE, pp 1079–1084

    Google Scholar 

  92. Xia F, Kong X, Xu Z (2011) Cyber-physical control over wireless sensor and actuator networks with packet loss. In: Wireless networking based control. Springer, New York, pp 85–102

    Chapter  Google Scholar 

  93. Thouin F, Thommes R, Coates MJ (2006) Optimal actuation strategies for sensor/actuator networks. In: 3rd annual international conference on mobile and ubiquitous systems: networking & services, 2006. IEEE, pp 1–8

    Google Scholar 

  94. Conti M, Das SK, Bisdikian C, Kumar M, Ni LM, Passarella A, Roussos G, Tröster G, Tsudik G, Zambonelli F (2012) Looking ahead in pervasive computing: challenges and opportunities in the era of cyber–physical convergence. Pervasive Mob Comput 8(1):2–21

    Article  Google Scholar 

  95. Guturu P, Bhargava B (2011) Cyber-physical systems: a confluence of cutting edge technological streams. International conference on advances in computing and communication

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zartasha Baloch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Baloch, Z., Shaikh, F.K., Unar, M.A. (2016). Interfacing Physical and Cyber Worlds: A Big Data Perspective. In: Mahmood, Z. (eds) Data Science and Big Data Computing. Springer, Cham. https://doi.org/10.1007/978-3-319-31861-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31861-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31859-2

  • Online ISBN: 978-3-319-31861-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics