Nothing Special   »   [go: up one dir, main page]

Skip to main content

Security of Numerical Sensors in Automata

  • Conference paper
  • First Online:
Implementation and Application of Automata (CIAA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9223))

Included in the following conference series:

Abstract

Numerical sensors are numerical functions applied on memory contents. We study the computability of the mutual information rate between two sensors in various forms of automata, including nondeterministic pushdown automata augmented with reversal-bounded counters as well as discrete timed automata. The computed mutual information rate can be used to determine whether it is the case that there is essentially no information flow between a low sensor and a high sensor and hence could provide a way to quantitatively and algorithmically analyze some covert channels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2), 183–235 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alvim, M.. Andrs, M., Palamidessi, C.: Probabilistic information flow. In: LICS 2010, pp. 314–321

    Google Scholar 

  3. Backes, M., Berg, M., Köpf, B.: Non-uniform distributions in quantitative information-flow. In: ASIACCS 2011, pp. 367–375

    Google Scholar 

  4. Bishop, M.: Introduction to Computer Security. Addison-Wesley, Reading (2011)

    Google Scholar 

  5. Chomsky, N., Miller, G.A.: Finite state languages. Inf. Control 1, 91–112 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley-Interscience, New York (2006)

    MATH  Google Scholar 

  7. Cui, C., Dang, Z., Fischer, V, Ibarra, O.H.: Execution information rate for some classes of automata. Information and Computation (accepted)

    Google Scholar 

  8. Cui, C., Dang, Z., Fischer, T.R., Ibarra, O.H.: Information Rate of Some Classes of Nonregular Languages: An Automata-Theoretic Approach, Information and Computation (conditionally accepted)

    Google Scholar 

  9. Dang, Z., Ibarra, O.H., Bultan, T., Kemmerer, R.A., Su, J.: Binary reachability analysis of discrete pushdown timed automata. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 65–84. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  10. Dang, Z.: Pushdown timed automata: a binary reachability characterization and safety verification. Theoret. Comput. Sci. 302(13), 93–121 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dang, Z., Fischer, T., Hutton, W., Ibarra, O., Li, Q.: Quantifying communication in synchronized languages. In: COCOON 2015 (to appear)

    Google Scholar 

  12. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  13. Gonnet, G.H.: Expected length of the longest probe sequence in hash code searching. J. ACM 28, 289–304 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation. Addison-Wesley Publishing Company, Reading (1979)

    MATH  Google Scholar 

  15. Ibarra, O.H.: Reversal-bounded multicounter machines and their decision problems. J. ACM 25(1), 116–133 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ibarra, O.H., Dang, Z., Egecioglu, O., Saxena, G.: Characterizations of catalytic membrane computing systems. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 480–489. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  17. Kaminger, F.P.: The noncomputability of the channel capacity of context-sensitive languages. Inf. Comput. 17(2), 175–182 (1970)

    MathSciNet  MATH  Google Scholar 

  18. Kuich, W.: On the entropy of context-free languages. Inf. Control 16(2), 173–200 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lanotte, R., Maggiolo-Schettini, A., Troina, A.: Time and probability-based information flow analysis. IEEE TSE 36(5), 719–734 (2010)

    MathSciNet  MATH  Google Scholar 

  20. Li, Q., Dang, Z.: Sampling automata and programs. Theoret. Comput. Sci. 577, 125–140 (2015)

    Article  MathSciNet  Google Scholar 

  21. Lowe, G.: Defining information flow quantity. J. Comput. Secur. 12(3–4), 619–653 (2004)

    Google Scholar 

  22. Mu, C., Clark, D.: Quantitative analysis of secure information flow via probabilistic semantics. In: ARES 2009, pp. 49–57

    Google Scholar 

  23. Paun, G.: Membrane Computing: An Introduction. Springer, Berlin (2000)

    Google Scholar 

  24. Raab, M., Steger, A.: “Balls into Bins” - a simple and tight analysis. In: Rolim, J.D.P., Serna, M., Luby, M. (eds.) RANDOM 1998. LNCS, vol. 1518, p. 159. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  25. Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. University of Illinois Press, Champaign (1949)

    MATH  Google Scholar 

  26. Smith, G.: On the foundations of quantitative information flow. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 288–302. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  27. Xie, G., Dang, Z., Ibarra, O.: A solvable class of quadratic Diophantine equations with applications to verification of infinite-state systems. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719. Springer, Heidelberg (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. Hutton III .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Dang, Z., Dementyev, D., Fischer, T.R., Hutton, W.J. (2015). Security of Numerical Sensors in Automata. In: Drewes, F. (eds) Implementation and Application of Automata. CIAA 2015. Lecture Notes in Computer Science(), vol 9223. Springer, Cham. https://doi.org/10.1007/978-3-319-22360-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22360-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22359-9

  • Online ISBN: 978-3-319-22360-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics