Abstract
In this work we contribute to development of a real-time human-like intuitive artificial vision system taking advantage from visual attention skill. Implemented on a 6-wheels mobile robot equipped with communication facilities, such a system allows detecting combustion perimeter in real outdoor environment without prior knowledge. It opens appealing perspectives in fire-fighting strategy enhancement and in early-stage woodland fire’s detection. We provide experimental results showing as well the plausibility as the efficiency of the proposed system.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
FAO, Wildfire management, a burning issue for livelihoods and land-use (2007), http://www.fao.org/newsroom/en/news/2007/1000570/index.html
San-Miguel-Ayanz, J., Ravail, N., Kelha, V., Ollero, A.: Active fire detection for emergency management: potential and limitations for the operational use of remote sensing. Natural Hazards 35, 361–376 (2005)
Lu, G., Yan, Y., Huang, Y., Reed, A.: An Intelligent Monitoring and Control System of Combustion Flames. Meas. Control 32(7), 164–168 (1999)
Gilabert, G., Lu, G., Yan, Y.: Three-Dimensional Tomographic Renconstruction of the Luminosity Distribution of a Combustion Flame. IEEE Trans. on Instr. and Measure. 56(4), 1300–1306 (2007)
Rossi, L., Akhloufi, M., Tison, Y.: Dynamic fire 3D modeling using a real-time stereovision system. J. of Communication and Computer 6(10), 54–61 (2009)
Ko, B.C., Cheong, K.H., Nam, J.Y.: Fire detection based on vision sensor and support vector machines. Fire Safety J. 44, 322–329 (2009)
Celik, T., Demirel, H.: Fire detection in video sequences using a generic color model. Fire Safety J. 44, 147–158 (2009)
Chen, T., Wu, P., Chiou, Y.: An early fire-detection method based on image processing. In: Proc. of Int. Conf. on Image Processing, pp. 1707–1710 (2004)
Rossi, L., Akhloufi, M., Tison, Y., Pieri, A.: On the use of stereovision to develop a novel instrumentation system to extract geometric fire fronts characteristics. Fire Safety Journal 46(1-2), 9–20 (2011)
Brand, R.J., Baldwin, D.A., Ashburn, L.A.: Evidence for ‘motionese’: modifications in mothers infant-directed action. Developmental Science, 72–83 (2002)
Wolfe, J.M., Horowitz, T.S.: What attributes guide the deployment of visual attention and how do they do it? Nature Reviews Neuroscience, 495–501 (2004)
Achanta, R., Hemami, S., Estrada, F., Susstrunk, S.: Frequency-tuned Salient Region Detection. In: Proc. of IEEE Int. Conf. on Computer Vision and Pattern Recognition (2009)
Itti, L., Koch, C., Niebur, E.: A Model of Saliency-Based Visual Attention for Rapid Scene Analysis. IEEE Trans. on Pattern Analysis and Machine Intel. 20, 1254–1259 (1998)
Harel, J., Koch, C., Perona, P.: Graph-based visual saliency. In: Advances in Neural Information Processing Systems, vol. 19, pp. 545–552 (2007)
Achanta, R., Estrada, F., Wils, P., Süsstrunk, S.: Salient Region Detection and Segmentation. In: Gasteratos, A., Vincze, M., Tsotsos, J.K. (eds.) ICVS 2008. LNCS, vol. 5008, pp. 66–75. Springer, Heidelberg (2008)
Liu, T., Yuan, Z., Sun, J., Wang, J., Zheng, N., Tang, X., Shum, H.-Y.: Learning to Detect a Salient Object. IEEE Trans. Pattern Anal. Mach. Intell. 33(2), 353–367 (2011)
Liang, Z., Chi, Z., Fu, H., Feng, D.: Salient object detection using content-sensitive hypergraph representation and partitioning. Pattern Rec. 45(11), 3886–3901 (2012)
Ramík, D.M., Sabourin, C., Madani, K.: Hybrid Salient Object Extraction Approach with Automatic Estimation of Visual Attention Scale. In: Proc. of 7th Int. Conf. on Signal Image Technology & Internet-Based Systems, Dijon, France, pp. 438–445 (2011)
Ramik, D.M., Sabourin, C., Moreno, R., Madani, K.: A Machine Learning based Intelligent Vision System for Autonomous Object Detection and Recognition. J. of Applied Intelligence (2013), doi:10.1007/s10489-013-0461-5
Moreno, R., Ramik, D.M., Graña, M., Madani, K.: Image Segmentation on the Spherical Coordinate Representation of the RGB Color Space. IET Image Processing 6(9), 1275–1283 (2012)
Liu, T., Yuan, Z., Sun, J., Wang, J., Zheng, N., Tang, X., Shum, H.-Y.: Learning to Detect a Salient Object. In: Proc. of Computer Vision and Pattern Recognition, pp. 353–367 (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Kachurka, V., Madani, K., Sabourin, C., Golovko, V. (2014). A Statistical Approach to Human-Like Visual Attention and Saliency Detection for Robot Vision: Application to Wildland Fires’ Detection. In: Golovko, V., Imada, A. (eds) Neural Networks and Artificial Intelligence. ICNNAI 2014. Communications in Computer and Information Science, vol 440. Springer, Cham. https://doi.org/10.1007/978-3-319-08201-1_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-08201-1_12
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-08200-4
Online ISBN: 978-3-319-08201-1
eBook Packages: Computer ScienceComputer Science (R0)