Abstract
This paper presents a keyed hash function satisfying collision resistance and the pseudorandom-function (PRF) property. It is based on the Merkle-Damgård hash function. It is shown to satisfy collision resistance under the ideal assumption that the underlying compression function is a random oracle. It is also shown to be a secure PRF if the underlying compression function is a secure PRF against related-key attacks in two keying strategies. The novel feature of the proposed keyed hash function is its efficiency. It achieves the minimum number of calls to the underlying compression function for any message input. Namely, constructed with the compression function accepting a \(w\)-bit message block, it processes any \(l(\ge 0)\)-bit massage with \(\max \{1,\lceil l/w\rceil \}\) calls to the compression function. Thus, it is more efficient than the standardized keyed hash function HMAC, which also satisfies both collision resistance and the PRF property, especially for short messages. The proposed keyed hash function, as well as HMAC, can be instantiated with the SHA-256 compression function.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Andreeva, E., Bhattacharyya, R., Roy, A.: Compactness of hashing modes and efficiency beyond Merkle tree. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12697, pp. 92–123. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77886-6_4
Bellare, M.: New proofs for NMAC and HMAC: security without collision-resistance. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 602–619. Springer, Heidelberg (2006). https://doi.org/10.1007/11818175_36
Bellare, M., Bernstein, D.J., Tessaro, S.: Hash-function based PRFs: AMAC and its multi-user security. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 566–595. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3_22
Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authentication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_1
Bellare, M., Canetti, R., Krawczyk, H.: Pseudorandom functions revisited: the cascade construction and its concrete security. In: Proceedings of the 37th IEEE Symposium on Foundations of Computer Science, pp. 514–523 (1996)
Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: RKA-PRPs, RKA-PRFs, and applications. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 491–506. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_31
Bellare, M., Ristenpart, T.: Multi-property-preserving hash domain extension and the EMD transform. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 299–314. Springer, Heidelberg (2006). https://doi.org/10.1007/11935230_20
Boneh, D., Eskandarian, S., Fisch, B.: Post-quantum EPID signatures from symmetric primitives. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405, pp. 251–271. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4_13
Damgård, I.B.: A design principle for hash functions. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0_39
Dodis, Y., Grubbs, P., Ristenpart, T., Woodage, J.: Fast message franking: from invisible salamanders to encryptment. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 155–186. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_6
Dodis, Y., Khovratovich, D., Mouha, N., Nandi, M.: T5: hashing five inputs with three compression calls. Cryptology ePrint Archive, Report 2021/373 (2021). https://ia.cr/2021/373
FIPS PUB 180–4: secure hash standard (SHS) (2015)
FIPS PUB 198–1: the keyed-hash message authentication code (HMAC) (2008)
Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM 33(4), 792–807 (1986). https://doi.org/10.1145/6490.6503
Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299 (1984). https://doi.org/10.1016/0022-0000(84)90070-9
Grubbs, P., Lu, J., Ristenpart, T.: Message franking via committing authenticated encryption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 66–97. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63697-9_3
Hirose, S.: Sequential hashing with minimum padding. Cryptography 2(2), 11 (2018). https://doi.org/10.3390/cryptography2020011
Hirose, S., Park, J.H., Yun, A.: A simple variant of the Merkle-Damgård scheme with a permutation. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 113–129. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-2_7
Hirose, S., Yabumoto, A.: A tweak for a PRF mode of a compression function and its applications. In: Bica, I., Reyhanitabar, R. (eds.) SECITC 2016. LNCS, vol. 10006, pp. 103–114. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47238-6_7
ISO/IEC 9797–2:2021: information security - message authentication codes (MACs) - Part 2: mechanisms using a dedicated hash-function (2021)
Iwata, T., Kurosawa, K.: OMAC: One-key CBC MAC. Cryptology ePrint Archive, Report 2002/180 (2002). https://ia.cr/2002/180
Iwata, T., Kurosawa, K.: OMAC: one-key CBC MAC. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 129–153. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39887-5_11
Kuwakado, H., Hirose, S.: Pseudorandom-function property of the step-reduced compression functions of SHA-256 and SHA-512. In: Chung, K.-I., Sohn, K., Yung, M. (eds.) WISA 2008. LNCS, vol. 5379, pp. 174–189. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00306-6_13
Merkle, R.C.: One way hash functions and DES. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 428–446. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0_40
NIST Special Publication 800–38B: Recommendation for block cipher modes of operation: the CMAC mode for authentication (2005)
Acknowledgements
This work was supported by JSPS KAKENHI Grant Number JP21K11885.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Hirose, S. (2022). Collision-Resistant and Pseudorandom Function Based on Merkle-Damgård Hash Function. In: Park, J.H., Seo, SH. (eds) Information Security and Cryptology – ICISC 2021. ICISC 2021. Lecture Notes in Computer Science, vol 13218. Springer, Cham. https://doi.org/10.1007/978-3-031-08896-4_17
Download citation
DOI: https://doi.org/10.1007/978-3-031-08896-4_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-08895-7
Online ISBN: 978-3-031-08896-4
eBook Packages: Computer ScienceComputer Science (R0)