Nothing Special   »   [go: up one dir, main page]

Skip to main content

ContactPose: A Dataset of Grasps with Object Contact and Hand Pose

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12358))

Included in the following conference series:

  • 4252 Accesses

Abstract

Grasping is natural for humans. However, it involves complex hand configurations and soft tissue deformation that can result in complicated regions of contact between the hand and the object. Understanding and modeling this contact can potentially improve hand models, AR/VR experiences, and robotic grasping. Yet, we currently lack datasets of hand-object contact paired with other data modalities, which is crucial for developing and evaluating contact modeling techniques. We introduce ContactPose, the first dataset of hand-object contact paired with hand pose, object pose, and RGB-D images. ContactPose has 2306 unique grasps of 25 household objects grasped with 2 functional intents by 50 participants, and more than 2.9 M RGB-D grasp images. Analysis of ContactPose data reveals interesting relationships between hand pose and contact. We use this data to rigorously evaluate various data representations, heuristics from the literature, and learning methods for contact modeling. Data, code, and trained models are available at https://contactpose.cc.gatech.edu.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ballan, L., Taneja, A., Gall, J., Van Gool, L., Pollefeys, M.: Motion capture of hands in action using discriminative salient points. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 640–653. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33783-3_46

    Chapter  Google Scholar 

  2. Bernardin, K., Ogawara, K., Ikeuchi, K., Dillmann, R.: A sensor fusion approach for recognizing continuous human grasping sequences using hidden Markov models. IEEE Trans. Robot. 21(1), 47–57 (2005)

    Article  Google Scholar 

  3. Brahmbhatt, S., Ham, C., Kemp, C.C., Hays, J.: ContactDB: analyzing and predicting grasp contact via thermal imaging. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019

    Google Scholar 

  4. Brahmbhatt, S., Handa, A., Hays, J., Fox, D.: ContactGrasp: functional multi-finger grasp synthesis from contact. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2019)

    Google Scholar 

  5. Bullock, I.M., Feix, T., Dollar, A.M.: The yale human grasping dataset: grasp, object, and task data in household and machine shop environments. Int. J. Robot. Res. 34(3), 251–255 (2015)

    Article  Google Scholar 

  6. Bullock, I.M., Zheng, J.Z., De La Rosa, S., Guertler, C., Dollar, A.M.: Grasp frequency and usage in daily household and machine shop tasks. IEEE Trans. Haptics 6(3), 296–308 (2013)

    Article  Google Scholar 

  7. Campello, R.J.G.B., Moulavi, D., Zimek, A., Sander, J.: Hierarchical density estimates for data clustering, visualization, and outlier detection. ACM Trans. Knowl. Discov. Data, 10(1), 5:1–5:51 (2015). https://doi.org/10.1145/2733381.

  8. Deimel, R., Brock, O.: A novel type of compliant and underactuated robotic hand for dexterous grasping. Int. J. Robot. Res. 35(1–3), 161–185 (2016)

    Article  Google Scholar 

  9. Ehsani, K., Tulsiani, S., Gupta, S., Farhadi, A., Gupta, A.: Use the force, luke! learning to predict physical forces by simulating effects. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020

    Google Scholar 

  10. Feix, T., Romero, J., Schmiedmayer, H.B., Dollar, A.M., Kragic, D.: The grasp taxonomy of human grasp types. IEEE Trans. Hum.-Mach. Syst. 46(1), 66–77 (2015)

    Article  Google Scholar 

  11. Ferrari, C., Canny, J.: Planning optimal grasps. In: Proceedings IEEE International Conference on Robotics and Automation, pp. 2290–2295. IEEE (1992)

    Google Scholar 

  12. Fey, M., Lenssen, J.E.: Fast graph representation learning with PyTorch geometric. In: ICLR Workshop on Representation Learning on Graphs and Manifolds (2019)

    Google Scholar 

  13. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  14. Garcia-Hernando, G., Yuan, S., Baek, S., Kim, T.K.: First-person hand action benchmark with RGB-D videos and 3D hand pose annotations. In: Proceedings of Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  15. Garon, M., Lalonde, J.F.: Deep 6-dof tracking. IEEE Trans. Vis. Comput. Graph. 23(11), 2410–2418 (2017)

    Article  Google Scholar 

  16. Glauser, O., Wu, S., Panozzo, D., Hilliges, O., Sorkine-Hornung, O.: Interactive hand pose estimation using a stretch-sensing soft glove. ACM Trans. Graph. (TOG) 38(4), 1–15 (2019)

    Article  Google Scholar 

  17. Groueix, T., Fisher, M., Kim, V.G., Russell, B.C., Aubry, M.: A papier-mâché approach to learning 3D surface generation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 216–224 (2018)

    Google Scholar 

  18. Hamer, H., Gall, J., Weise, T., Van Gool, L.: An object-dependent hand pose prior from sparse training data. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 671–678. IEEE (2010)

    Google Scholar 

  19. Hamer, H., Schindler, K., Koller-Meier, E., Van Gool, L.: Tracking a hand manipulating an object. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 1475–1482. IEEE (2009)

    Google Scholar 

  20. Hampali, S., Rad, M., Oberweger, M., Lepetit, V.: Honnotate: a method for 3D annotation of hand and object poses. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020

    Google Scholar 

  21. Hassan, M., Choutas, V., Tzionas, D., Black, M.J.: Resolving 3D human pose ambiguities with 3D scene constraints. In: The IEEE International Conference on Computer Vision (ICCV), October 2019

    Google Scholar 

  22. Hasson, Y., et al.: Learning joint reconstruction of hands and manipulated objects. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 11807–11816 (2019)

    Google Scholar 

  23. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: IEEE International Conference on Computer Vision (ICCV), pp. 2980–2988, October 2017

    Google Scholar 

  24. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)

    Google Scholar 

  25. Homberg, B.S., Katzschmann, R.K., Dogar, M.R., Rus, D.: Haptic identification of objects using a modular soft robotic gripper. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1698–1705. IEEE (2015)

    Google Scholar 

  26. Huber, P.J.: Robust Estimation of a location parameter. In: Kotz, S., Johnson, N.L., (eds) Breakthroughs in Statistics. Springer Series in Statistics (Perspectives in Statistics). Springer, New York, NY (1992) https://doi.org/10.1007/978-1-4612-4380-9_35

  27. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015)

    Google Scholar 

  28. Joo, H., Simon, T., Sheikh, Y.: Total capture: a 3D deformation model for tracking faces, hands, and bodies. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8320–8329 (2018)

    Google Scholar 

  29. Larsen, E., Gottschalk, S., Lin, M.C., Manocha, D.: Fast distance queries with rectangular swept sphere volumes. In: IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065), vol. 4, pp. 3719–3726. IEEE (2000)

    Google Scholar 

  30. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  31. Lu, Q., Chenna, K., Sundaralingam, B., Hermans, T.: Planning multi-fingered grasps as probabilistic inference in a learned deep network. In: International Symposium on Robotics Research (2017)

    Google Scholar 

  32. Mahler, J., et al.: Learning ambidextrous robot grasping policies. Sci. Robot. 4(26), eaau4984 (2019)

    Article  Google Scholar 

  33. Mahler, J., et al.: Dex-net 1.0: a cloud-based network of 3D objects for robust grasp planning using a multi-armed bandit model with correlated rewards. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1957–1964. IEEE (2016)

    Google Scholar 

  34. Maturana, D., Scherer, S.: Voxnet: a 3D convolutional neural network for real-time object recognition. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 922–928. IEEE (2015)

    Google Scholar 

  35. Miller, A.T., Allen, P.K.: Graspit! a versatile simulator for robotic grasping. IEEE Robot. Autom. Mag. 11(4), 110–122 (2004)

    Article  Google Scholar 

  36. Moon, G., Yong Chang, J., Mu Lee, K.: V2V-posenet: voxel-to-voxel prediction network for accurate 3D hand and human pose estimation from a single depth map. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5079–5088 (2018)

    Google Scholar 

  37. Paszke, A., et al.: Automatic differentiation in PyTorch. In: NIPS Autodiff Workshop (2017)

    Google Scholar 

  38. Pavlakos, G., et al.: Expressive body capture: 3D hands, face, and body from a single image. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019. http://smpl-x.is.tue.mpg.de

  39. Pham, T.H., Kheddar, A., Qammaz, A., Argyros, A.A.: Towards force sensing from vision: observing hand-object interactions to infer manipulation forces. In: Proceedings of the IEEE Conference on CComputer Vision and Pattern Recognition, pp. 2810–2819 (2015)

    Google Scholar 

  40. Pham, T.H., Kyriazis, N., Argyros, A.A., Kheddar, A.: Hand-object contact force estimation from markerless visual tracking. IEEE Trans. Pattern Anal. Mach. Intell. 40, 2883–2896 (2018)

    Article  Google Scholar 

  41. Pollard, N.S.: Parallel methods for synthesizing whole-hand grasps from generalized prototypes. Tech. rep, MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL INTELLIGENCE LAB (1994)

    Google Scholar 

  42. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: deep hierarchical feature learning on point sets in a metric space. In: Advances in neural information processing systems, pp. 5099–5108 (2017)

    Google Scholar 

  43. Rogez, G., Supancic, J.S., Ramanan, D.: Understanding everyday hands in action from rgb-d images. In: Proceedings of the IEEE international conference on computer vision, pp. 3889–3897 (2015)

    Google Scholar 

  44. Romero, J., Tzionas, D., Black, M.J.: Embodied hands: modeling and capturing hands and bodies together. ACM Trans. Graph. (TOG) 36(6), 245 (2017)

    Article  Google Scholar 

  45. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  46. Simon, T., Joo, H., Matthews, I., Sheikh, Y.: Hand keypoint detection in single images using multiview bootstrapping. In: CVPR (2017)

    Google Scholar 

  47. Sridhar, S., Mueller, F., Zollhöfer, M., Casas, D., Oulasvirta, A., Theobalt, C.: Real-time joint tracking of a hand manipulating an object from RGB-D input. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 294–310. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_19

    Chapter  Google Scholar 

  48. Sundaram, S., Kellnhofer, P., Li, Y., Zhu, J.Y., Torralba, A., Matusik, W.: Learning the signatures of the human grasp using a scalable tactile glove. Nature 569(7758), 698 (2019)

    Article  Google Scholar 

  49. SynTouch LLC: BioTac. https://www.syntouchinc.com/robotics/. Accessed 5 March 2020

  50. Tekin, B., Bogo, F., Pollefeys, M.: H+ o: unified egocentric recognition of 3D hand-object poses and interactions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4511–4520 (2019)

    Google Scholar 

  51. Teschner, M., et al.: Collision detection for deformable objects. In: Computer Graphics Forum, vol. 24, pp. 61–81. Wiley Online Library (2005)

    Google Scholar 

  52. Tompson, J., Stein, M., Lecun, Y., Perlin, K.: Real-time continuous pose recovery of human hands using convolutional networks. ACM Trans. Graph. (ToG) 33(5), 169 (2014)

    Article  Google Scholar 

  53. Tremblay, J., To, T., Sundaralingam, B., Xiang, Y., Fox, D., Birchfield, S.: Deep object pose estimation for semantic robotic grasping of household objects. In: Conference on Robot Learning (CoRL) (2018). https://arxiv.org/abs/1809.10790

  54. Tzionas, D., Ballan, L., Srikantha, A., Aponte, P., Pollefeys, M., Gall, J.: Capturing hands in action using discriminative salient points and physics simulation. Int. J. Comput. Vis. 118(2), 172–193 (2016)

    Article  MathSciNet  Google Scholar 

  55. Wade, J., Bhattacharjee, T., Williams, R.D., Kemp, C.C.: A force and thermal sensing skin for robots in human environments. Robot. Auton. Syst. 96, 1–14 (2017)

    Article  Google Scholar 

  56. Ye, Y., Liu, C.K.: Synthesis of detailed hand manipulations using contact sampling. ACM Trans. Graph. (TOG) 31(4), 41 (2012)

    Article  Google Scholar 

  57. Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 649–666. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_40

    Chapter  Google Scholar 

  58. Zhang, X., Li, Q., Mo, H., Zhang, W., Zheng, W.: End-to-end hand mesh recovery from a monocular RGB image. In: The IEEE International Conference on Computer Vision (ICCV), October 2019

    Google Scholar 

  59. Zhou, Q.Y., Koltun, V.: Color map optimization for 3D reconstruction with consumer depth cameras. ACM Trans. Graph. (TOG) 33(4), 1–10 (2014)

    Google Scholar 

  60. Zhou, Q.Y., Park, J., Koltun, V.: Open3D: a modern library for 3D data processing. arXiv:1801.09847 (2018)

  61. Zhou, X., Leonardos, S., Hu, X., Daniilidis, K.: 3D shape estimation from 2D landmarks: a convex relaxation approach. In: proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4447–4455 (2015)

    Google Scholar 

  62. Zimmermann, C., Ceylan, D., Yang, J., Russell, B., Argus, M., Brox, T.: Freihand: a dataset for markerless capture of hand pose and shape from single RGB images. In: The IEEE International Conference on Computer Vision (ICCV), October 2019

    Google Scholar 

Download references

Acknowledgements

We are thankful to the anonymous reviewers for helping improve this paper. We would also like to thank Elise Campbell, Braden Copple, David Dimond, Vivian Lo, Jeremy Schichtel, Steve Olsen, Lingling Tao, Sue Tunstall, Robert Wang, Ed Wei, and Yuting Ye for discussions and logistics help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samarth Brahmbhatt .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 54309 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brahmbhatt, S., Tang, C., Twigg, C.D., Kemp, C.C., Hays, J. (2020). ContactPose: A Dataset of Grasps with Object Contact and Hand Pose. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12358. Springer, Cham. https://doi.org/10.1007/978-3-030-58601-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58601-0_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58600-3

  • Online ISBN: 978-3-030-58601-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics