Abstract
For primes \(p \equiv 3 \bmod 4\), we show that setting up CSIDH on the surface, i.e., using supersingular elliptic curves with endomorphism ring \(\mathbf {Z}[(1 + \sqrt{-p})/2]\), amounts to just a few sign switches in the underlying arithmetic. If \(p \equiv 7 \bmod 8\) then horizontal 2-isogenies can be used to help compute the class group action. The formulas we derive for these 2-isogenies are very efficient (they basically amount to a single exponentiation in \(\mathbf {F}_p\)) and allow for a noticeable speed-up, e.g., our resulting CSURF-512 protocol runs about \(5.68\%\) faster than CSIDH-512. This improvement is completely orthogonal to all previous speed-ups, constant-time measures and construction of cryptographic primitives that have appeared in the literature so far. At the same time, moving to the surface gets rid of the redundant factor \(\mathbf {Z}_3\) of the acting ideal-class group, which is present in the case of CSIDH and offers no extra security.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Moreover, if \(p \equiv 3 \bmod 4\) then \(x^3 + Ax^2 - x\) is automatically square-free, allowing for a marginally simpler key validation. But this deserves a footnote, at most.
- 2.
References
Baelen, B.: Post-quantum key-exchange: using group actions from supersingular elliptic curve isogenies. Master’s thesis, KU Leuven (2019)
Bernstein, D.J., Lange, T.: Montgomery curves and the Montgomery ladder. In: Bos, J.W., Lenstra, A.K. (eds.) Topics in Computational Number Theory Inspired by Peter L. Montgomery, pp. 82–115. Cambridge University Press, Cambridge (2017)
Bernstein, D.J., Lange, T., Martindale, C., Panny, L.: Quantum circuits for the CSIDH: optimizing quantum evaluation of isogenies. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. Part II. LNCS, vol. 11477, pp. 409–441. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3_15
Beullens, W., Kleinjung, T., Vercauteren, F.: CSI-FiSh: efficient isogeny based signatures through class group computations. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. Part I. LNCS, vol. 11921, pp. 227–247. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34578-5_9
Bonnetain, X., Schrottenloher, A.: Submerging CSIDH. IACR Cryptology ePrint Archive, p. 537 (2018)
Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system I. The user language. J. Symbolic Comput. 24(3–4), 235–265 (1997). Computational algebra and number theory (London, 1993)
Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. Part III. LNCS, vol. 11274, pp. 395–427. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03332-3_15
Castryck, W., Panny, L., Vercauteren, F.: Rational isogenies from irrational endomorphisms. IACR Cryptology ePrint Archive, 2019:1202 (2019)
Cervantes-Vázquez, D., Chenu, M., Chi-Domínguez, J.-J., De Feo, L., Rodríguez-Henríquez, F., Smith, B.: Stronger and faster side-channel protections for CSIDH. In: Schwabe, P., Thériault, N. (eds.) LATINCRYPT 2019. LNCS, vol. 11774, pp. 173–193. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30530-7_9
Couveignes, J.-M.: Hard homogeneous spaces. IACR Cryptology ePrint Archive, 2006:291 (2006)
De Feo, L., Masson, S., Petit, C., Sanso, A.: Verifiable delay functions from supersingular isogenies and pairings. IACR Cryptology ePrint Archive, 2019:166 (2019)
De Feo, L., Meyer, M.: Threshold schemes from isogeny assumptions. IACR Cryptology ePrint Archive, 2019:1288 (2019)
Delfs, C., Galbraith, S.D.: Computing isogenies between supersingular elliptic curves over \(\mathbf{F}\)\(_p\). Des. Codes Crypt. 78(2), 425–440 (2016)
Fan, X., Tian, S., Li, B., Xiu, X.: CSIDH on other form of elliptic curves. IACR Cryptology ePrint Archive, 2019:1417 (2019)
Hutchinson, A., LeGrow, J., Koziel, B., Azarderakhsh, R.: Further optimizations of CSIDH: a systematic approach to efficient strategies, permutations, and bound vectors. IACR Cryptology ePrint Archive, 2019:1121 (2019)
Kuperberg, G.: Another subexponential-time quantum algorithm for the dihedral hidden subgroup problem. In: 8th Conference on the Theory of Quantum Computation, Communication and Cryptography. LIPIcs, Leibniz International Proceedings in Informatics, vol. 22, pp. 20–34 (2013)
Onuki, H., Takagi, T.: On collisions related to an ideal class of order 3 in CSIDH. IACR Cryptology ePrint Archive, 2019:1209 (2019)
Peikert, C.: He gives C-sieves on the CSIDH. IACR Cryptology ePrint Archive, 2019:725 (2019)
Renes, J.: Computing isogenies between montgomery curves using the action of (0, 0). In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018. LNCS, vol. 10786, pp. 229–247. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-79063-3_11
Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies. IACR Cryptology ePrint Archive, 2006:145 (2006)
Schoof, R.: Nonsingular plane cubic curves over finite fields. J. Combin. Theor. Ser. A 46(2), 183–211 (1987)
Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)
Stolbunov, A.: Public-key encryption based on cycles of isogenous elliptic curves. Master’s thesis, Saint-Petersburg State Polytechnical University (2004). (in Russian)
Stolbunov, A.: Cryptographic schemes based on isogenies. Ph.D. thesis, Norwegian University of Science and Technology (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Castryck, W., Decru, T. (2020). CSIDH on the Surface. In: Ding, J., Tillich, JP. (eds) Post-Quantum Cryptography. PQCrypto 2020. Lecture Notes in Computer Science(), vol 12100. Springer, Cham. https://doi.org/10.1007/978-3-030-44223-1_7
Download citation
DOI: https://doi.org/10.1007/978-3-030-44223-1_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-44222-4
Online ISBN: 978-3-030-44223-1
eBook Packages: Computer ScienceComputer Science (R0)