Nothing Special   »   [go: up one dir, main page]

Skip to main content

(Short Paper) A Faster Constant-Time Algorithm of CSIDH Keeping Two Points

  • Conference paper
  • First Online:
Advances in Information and Computer Security (IWSEC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11689))

Included in the following conference series:

Abstract

At ASIACRYPT 2018, Castryck, Lange, Martindale, Panny and Renes proposed CSIDH, which is a key-exchange protocol based on isogenies between elliptic curves, and a candidate for post-quantum cryptography. However, the implementation by Castryck et al. is not constant-time. Specifically, a part of the secret key could be recovered by the side-channel attacks. Recently, Meyer, Campos, and Reith proposed a constant-time implementation of CSIDH by introducing dummy isogenies and taking secret exponents only from intervals of non-negative integers. Their non-negative intervals make the calculation cost of their implementation of CSIDH twice that of the worst case of the standard (variable-time) implementation of CSIDH. In this paper, we propose a more efficient constant-time algorithm that takes secret exponents from intervals symmetric with respect to the zero. For using these intervals, we need to keep two torsion points on an elliptic curve and calculation for these points. We implemented our algorithm by extending the implementation in C of Meyer et al. (originally from Castryck et al.). Then our implementation achieved 152.8 million clock cycles, which is about 29.03% faster than that of Meyer et al.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The code by Meyer et al. is available for download at https://zenon.cs.hs-rm.de/pqcrypto/constant-csidh-c-implementation. The commit ID of the version we used is 7fc2abdd, the latest version on 15 Feb, 2019.

References

  1. Bernstein, D.J., Hamburg, M., Krasnova, A., Lange, T.: Elligator: elliptic-curve points indistinguishable from uniform random strings. In: Proceedings of the 2013 ACM Conference on Computer and Communications Security, pp. 967–980 (2013)

    Google Scholar 

  2. Bernstein, D.J., Lange, T., Martindale, C., Panny, L.: Quantum circuits for the CSIDH: optimizing quantum evaluation of isogenies. IACR Cryuptography ePrint Archive 2018/1059. https://eprint.iacr.org/2018/1059 (to appear at Eurocrypt 2019)

  3. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11274, pp. 395–427. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03332-3_15

    Chapter  Google Scholar 

  4. Cohen, H., Lenstra Jr., H.W.: Heuristics on class groups of number fields. Number Theory Noordwijkerhout 1983, 33–62 (1984)

    MathSciNet  MATH  Google Scholar 

  5. Costello, C., Hisil, H.: A simple and compact algorithm for SIDH with arbitrary degree isogenies. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 303–329. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9_11

    Chapter  Google Scholar 

  6. Costello, C., Longa, P., Naehrig, M.: Efficient algorithms for supersingular isogeny Diffie-Hellman. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 572–601. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4_21

    Chapter  Google Scholar 

  7. Costello, C., Smith, B.: Montgomery curves and their arithmetic. J. Crypt. Eng. 8(3), 227–240 (2018)

    Article  Google Scholar 

  8. Couveigne, J.-M.: Hard homogeneous spaces. IACR Cryptology ePrint Archive 2006/291. https://eprint.iacr.org/2006/291

  9. De Feo, L., Kieffer, J., Smith, B.: Towards practical key exchange from ordinary isogeny graphs. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11274, pp. 365–394. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03332-3_14

    Chapter  Google Scholar 

  10. Delfs, C., Galbraith, S.D.: Computing isogenies between supersingulrar elliptic curves over \({\mathbb{F}}_{p}\). Des. Codes Crypt. 78(2), 425–440 (2016)

    Article  Google Scholar 

  11. Galbraith, S.D., Petit, C., Shani, B., Ti, Y.B.: On the security of supersingular isogeny cryptosystems. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 63–91. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_3

    Chapter  Google Scholar 

  12. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 19–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5_2

    Chapter  MATH  Google Scholar 

  13. Jalali, A., Azarderakhsh, R., Kermani, M.M., Jao, D.: Towards optimized and constant-time CSIDH on embedded devices. In: Polian, I., Stöttinger, M. (eds.) COSADE 2019. LNCS, vol. 11421, pp. 215–231. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16350-1_12. https://eprint.iacr.org/2019/297

    Chapter  Google Scholar 

  14. Jao, D., et al.: Supersingular isogeny key encapsulation. Submission to the NIST Post-Quantum Cryptography Standardization project. https://sike.org

  15. Meyer, M., Campos, F., Reith, S.: On Lions and Elligators: an efficient constatn-time implementation of CSIDH. IACR Cryptology ePrint Archive 2018/1198. https://eprint.iacr.org/2018/1198 (to appear at PQCrypto 2019)

  16. Meyer, M., Reith, S.: A faster way to the CSIDH. In: Chakraborty, D., Iwata, T. (eds.) INDOCRYPT 2018. LNCS, vol. 11356, pp. 137–152. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05378-9_8

    Chapter  Google Scholar 

  17. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization. Math. Comput. 48(177), 24–264 (1987)

    Article  MathSciNet  Google Scholar 

  18. National Institute of Standards and Technology (NIST): NIST Post-Quantum Cryptography Standardization (2016). https://csrc.nist.gov/Projects/Post-Quantum-Cryptography

  19. Onuki, H., Aikawa, Y., Yamazaki, T., Takagi, T.: A faster constant-time algorithm of CSIDH keeping two points IACR Cryuptography ePrint Archive 2019/353. https://eprint.iacr.org/2019/353

  20. Petit, C.: Faster algorithms for isogeny problems using torsion point images. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 330–353. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9_12

    Chapter  Google Scholar 

  21. Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies. IACR Cryptology ePrint Archive 2006/145. https://eprint.iacr.org/2006/145

  22. Siegel, C.: Über die Classenzahl quadratischer Zahlkörper. Acta Arith. 1(1), 83–86 (1935)

    Article  Google Scholar 

  23. Stolbunov, A.: Constructing public-key cryptographic schemes based on class group action on a set of isogenous elliptic curves. Adv. Math. Commun. 4(2), 215–235 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

This work was supported by JST CREST Grant Number JPMJCR14D6, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Onuki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Onuki, H., Aikawa, Y., Yamazaki, T., Takagi, T. (2019). (Short Paper) A Faster Constant-Time Algorithm of CSIDH Keeping Two Points. In: Attrapadung, N., Yagi, T. (eds) Advances in Information and Computer Security. IWSEC 2019. Lecture Notes in Computer Science(), vol 11689. Springer, Cham. https://doi.org/10.1007/978-3-030-26834-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26834-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26833-6

  • Online ISBN: 978-3-030-26834-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics