Nothing Special   »   [go: up one dir, main page]

Skip to main content

Comparison of Network Intrusion Detection Performance Using Feature Representation

  • Conference paper
  • First Online:
Engineering Applications of Neural Networks (EANN 2019)

Abstract

Intrusion detection is essential for the security of the components of any network. For that reason, several strategies can be used in Intrusion Detection Systems (IDS) to identify the increasing attempts to gain unauthorized access with malicious purposes including those base on machine learning. Anomaly detection has been applied successfully to numerous domains and might help to identify unknown attacks. However, there are existing issues such as high error rates or large dimensionality of data that make its deployment difficult in real-life scenarios. Representation learning allows to estimate new latent features of data in a low-dimensionality space. In this work, anomaly detection is performed using a previous feature learning stage in order to compare these methods for the detection of intrusions in network traffic. For that purpose, four different anomaly detection algorithms are applied to recent network datasets using two different feature learning methods such as principal component analysis and autoencoders. Several evaluation metrics such as accuracy, F1 score or ROC curves are used for comparing their performance. The experimental results show an improvement for two of the anomaly detection methods using autoencoder and no significant variations for the linear feature transformation.

This research was supported by the Regional Government of Castilla y León and the European Regional Development Fund under project LE045P17.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmed, M., Mahmood, A.N., Hu, J.: A survey of network anomaly detection techniques. J. Netw. Comput. Appl. 60, 19–31 (2016)

    Article  Google Scholar 

  2. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  3. Bhuyan, M.H., Bhattacharyya, D.K., Kalita, J.K.: Network anomaly detection: methods, systems and tools. IEEE Commun. Surv. Tutor. 16(1), 303–336 (2014)

    Article  Google Scholar 

  4. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: identifying density-based local outliers. ACM SIGMOD Rec. 29, 93–104 (2000)

    Article  Google Scholar 

  5. Buczak, A.L., Guven, E.: A survey of data mining and machine learning methods for cyber security intrusion detection. IEEE Commun. Surv. Tutor. 18(2), 1153–1176 (2015)

    Article  Google Scholar 

  6. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection - a survey. ACM Comput. Surv. 41(3), 15:1–15:44 (2009). https://doi.org/10.1145/1541880.1541882

    Article  Google Scholar 

  7. Chen, Y., Li, Y., Cheng, X.-Q., Guo, L.: Survey and taxonomy of feature selection algorithms in intrusion detection system. In: Lipmaa, H., Yung, M., Lin, D. (eds.) Inscrypt 2006. LNCS, vol. 4318, pp. 153–167. Springer, Heidelberg (2006). https://doi.org/10.1007/11937807_13

    Chapter  Google Scholar 

  8. Erfani, S.M., Rajasegarar, S., Karunasekera, S., Leckie, C.: High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning. Pattern Recognit. 58, 121–134 (2016)

    Article  Google Scholar 

  9. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006). https://doi.org/10.1126/science.1127647

    Article  MathSciNet  MATH  Google Scholar 

  10. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. (CSUR) 31(3), 264–323 (1999)

    Article  Google Scholar 

  11. Javaid, A., Niyaz, Q., Sun, W., Alam, M.: A deep learning approach for network intrusion detection system. In: Proceedings of the 9th EAI International Conference on Bio-inspired Information and Communications Technologies (formerly BIONETICS), pp. 21–26. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering) (2016)

    Google Scholar 

  12. Khan, L., Awad, M., Thuraisingham, B.: A new intrusion detection system using support vector machines and hierarchical clustering. VLDB J. 16(4), 507–521 (2007)

    Article  Google Scholar 

  13. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR abs/1412.6980 (2014). http://arxiv.org/abs/1412.6980

  14. Lee, J.A., Verleysen, M.: Nonlinear Dimensionality Reduction. Springer, New York (2007). https://doi.org/10.1007/978-0-387-39351-3

    Book  MATH  Google Scholar 

  15. Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: Proceedings of the 2008 Eighth IEEE International Conference on Data Mining, ICDM 2008, pp. 413–422. IEEE Computer Society (2008)

    Google Scholar 

  16. Mahoney, M.V., Chan, P.K.: An analysis of the 1999 DARPA/Lincoln Laboratory evaluation data for network anomaly detection. In: Vigna, G., Kruegel, C., Jonsson, E. (eds.) RAID 2003. LNCS, vol. 2820, pp. 220–237. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45248-5_13

    Chapter  Google Scholar 

  17. McHugh, J.: Testing intrusion detection systems: a critique of the 1998 and 1999 DARPA intrusion detection system evaluations as performed by Lincoln laboratory. ACM Trans. Inf. Syst. Secur. (TISSEC) 3(4), 262–294 (2000)

    Article  Google Scholar 

  18. Mirsky, Y., Doitshman, T., Elovici, Y., Shabtai, A.: Kitsune: an ensemble of autoencoders for online network intrusion detection. arXiv preprint arXiv:1802.09089 (2018)

  19. Moustafa, N., Slay, J.: UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set). In: Military Communications and Information Systems Conference (MilCIS), pp. 1–6. IEEE (2015)

    Google Scholar 

  20. Muda, Z., Yassin, W., Sulaiman, M., Udzir, N.I., et al.: A k-means and Naive Bayes learning approach for better intrusion detection. Inf. Technol. J. 10(3), 648–655 (2011)

    Article  Google Scholar 

  21. Nguyen, M.N., Vien, N.A.: Scalable and interpretable one-class SVMs with deep learning and random fourier features. arXiv preprint arXiv:1804.04888 (2018)

  22. Rousseeuw, P.J., Driessen, K.V.: A fast algorithm for the minimum covariance determinant estimator. Technometrics 41(3), 212–223 (1999)

    Article  Google Scholar 

  23. Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Estimating the support of a high-dimensional distribution. Neural Comput. 13(7), 1443–1471 (2001)

    Article  Google Scholar 

  24. Sharafaldin, I., Lashkari, A.H., Ghorbani, A.A.: Toward generating a new intrusion detection dataset and intrusion traffic characterization. In: ICISSP, pp. 108–116 (2018)

    Google Scholar 

  25. Sommer, R., Paxson, V.: Outside the closed world: on using machine learning for network intrusion detection. In: 2010 IEEE Symposium on Security and Privacy, pp. 305–316. IEEE (2010)

    Google Scholar 

  26. Song, J., Takakura, H., Okabe, Y., Eto, M., Inoue, D., Nakao, K.: Statistical analysis of honeypot data and building of Kyoto 2006+ dataset for NIDS evaluation. In: Proceedings of the First Workshop on Building Analysis Datasets and Gathering Experience Returns for Security, pp. 29–36. ACM (2011)

    Google Scholar 

  27. Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.A.: A detailed analysis of the KDD CUP 99 data set. In: Proceedings of the Second IEEE Symposium on Computational Intelligence for Security and Defence Applications (2009)

    Google Scholar 

  28. Wang, K., Stolfo, S.J.: Anomalous payload-based network intrusion detection. In: Jonsson, E., Valdes, A., Almgren, M. (eds.) RAID 2004. LNCS, vol. 3224, pp. 203–222. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30143-1_11

    Chapter  Google Scholar 

  29. Zhang, Z., Li, J., Manikopoulos, C., Jorgenson, J., Ucles, J.: HIDE: a hierarchical network intrusion detection system using statistical preprocessing and neural network classification. In: Proceedings of the IEEE Workshop on Information Assurance and Security, pp. 85–90 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Pérez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pérez, D., Alonso, S., Morán, A., Prada, M.A., Fuertes, J.J., Domínguez, M. (2019). Comparison of Network Intrusion Detection Performance Using Feature Representation. In: Macintyre, J., Iliadis, L., Maglogiannis, I., Jayne, C. (eds) Engineering Applications of Neural Networks. EANN 2019. Communications in Computer and Information Science, vol 1000. Springer, Cham. https://doi.org/10.1007/978-3-030-20257-6_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20257-6_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20256-9

  • Online ISBN: 978-3-030-20257-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics