Nothing Special   »   [go: up one dir, main page]

Skip to main content

End-to-End Detection and Re-identification Integrated Net for Person Search

  • Conference paper
  • First Online:
Computer Vision – ACCV 2018 (ACCV 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11362))

Included in the following conference series:

Abstract

This paper proposes a pedestrian detection and re-identification (re-id) integrated net (I-Net) in an end-to-end learning framework. The I-Net is used in real-world video surveillance scenarios, where the target person needs to be searched in the whole scene videos, and the annotations of pedestrian bounding boxes are unavailable. Comparing to the successful OIM method [31] for joint detection and re-id, we have three distinct contributions. First, we implement a Siamese architecture instead of one stream for an end-to-end training strategy. Second, a novel on-line pairing loss (OLP) with a feature dictionary restricts the positive pairs. Third, hard example priority softmax loss (HEP) with little computation cast is proposed to deal with the online hard example mining. We show our results on CUHK-SYSU and PRW datasets. Our method narrows the gap between detection and re-identification, and achieves a superior performance.

This work is supported by National Natural Science Fund of China (Grant 61771079) and Chongqing Science and Technology Project (cstc2017zdcy-zdzxX0002).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmed, E., Jones, M., Marks, T.K.: An improved deep learning architecture for person re-identification. In: Computer Vision and Pattern Recognition, pp. 3908–3916 (2015)

    Google Scholar 

  2. Cao, C., Wang, Y., Kato, J., Zhang, G., Mase, K.: Solving occlusion problem in pedestrian detection by constructing discriminative part layers. In: Applications of Computer Vision, pp. 91–99 (2017)

    Google Scholar 

  3. Chen, S.Z., Guo, C.C., Lai, J.H.: Deep ranking for person re-identification via joint representation learning. IEEE Trans. Image Process. 25(5), 2353–2367 (2016)

    Article  MathSciNet  Google Scholar 

  4. Chen, W., Chen, X., Zhang, J., Huang, K.: Beyond triplet loss: a deep quadruplet network for person re-identification (2017)

    Google Scholar 

  5. Chen, W., Chen, X., Zhang, J., Huang, K.: A multi-task deep network for person re-identification (2017)

    Google Scholar 

  6. Cheng, D., Gong, Y., Zhou, S., Wang, J., Zheng, N.: Person re-identification by multi-channel parts-based CNN with improved triplet loss function. In: Computer Vision and Pattern Recognition, pp. 1335–1344 (2016)

    Google Scholar 

  7. Ding, S., Lin, L., Wang, G., Chao, H.: Deep feature learning with relative distance comparison for person re-identification. Pattern Recognit. 48(10), 2993–3003 (2015)

    Article  Google Scholar 

  8. Dollar, P., Belongie, S., Perona, P.: Fast feature pyramids for object detection. IEEE Trans. Pattern Anal. Mach. Intell. 36(8), 1532 (2014)

    Article  Google Scholar 

  9. Dollar, P., Tu, Z., Perona, P., Belongie, S.: Integral channel features. In: British Machine Vision Conference, BMVC 2009, London, UK, 7–10 September 2009, Proceedings (2009)

    Google Scholar 

  10. Felzenszwalb, P.F., Girshick, R.B., Mcallester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1627–1645 (2010)

    Article  Google Scholar 

  11. Girshick, R.: Fast R-CNN. Computer Science (2015)

    Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  13. Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. In: ACM International Conference on Multimedia, pp. 675–678 (2014)

    Google Scholar 

  14. Li, W., Wang, X.: Locally aligned feature transforms across views. In: Computer Vision and Pattern Recognition, pp. 3594–3601 (2013)

    Google Scholar 

  15. Li, W., Zhao, R., Wang, X.: Human reidentification with transferred metric learning. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012. LNCS, vol. 7724, pp. 31–44. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37331-2_3

    Chapter  Google Scholar 

  16. Li, X., Zheng, W.S., Wang, X., Xiang, T.: Multi-scale learning for low-resolution person re-identification. In: IEEE International Conference on Computer Vision, pp. 3765–3773 (2015)

    Google Scholar 

  17. Liao, S., Hu, Y., Zhu, X., Li, S.Z.: Person re-identification by local maximal occurrence representation and metric learning. In: Computer Vision and Pattern Recognition, pp. 2197–2206 (2015)

    Google Scholar 

  18. Liu, H., et al.: Neural person search machines (2017)

    Google Scholar 

  19. Liu, J., et al.: Multi-scale triplet CNN for person re-identification. In: ACM on Multimedia Conference, pp. 192–196 (2016)

    Google Scholar 

  20. Nam, W., Dollar, P., Han, J.H.: Local decorrelation for improved pedestrian detection. In: NIPS, pp. 1–9 (2014)

    Google Scholar 

  21. Ouyang, W., Zeng, X., Wang, X.: Modeling mutual visibility relationship in pedestrian detection. In: Computer Vision and Pattern Recognition, pp. 3222–3229 (2013)

    Google Scholar 

  22. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017)

    Article  Google Scholar 

  23. Roth, P.M., Wohlhart, P., Hirzer, M., Kostinger, M., Bischof, H.: Large scale metric learning from equivalence constraints. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2288–2295 (2012)

    Google Scholar 

  24. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering, pp. 815–823 (2015)

    Google Scholar 

  25. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. Computer Science (2014)

    Google Scholar 

  26. Song, B., Kamal, A.T., Soto, C., Ding, C., Farrell, J.A., Roychowdhury, A.K.: Tracking and activity recognition through consensus in distributed camera networks. IEEE Trans. Image Process. 19(10), 2564–2579 (2010)

    Article  MathSciNet  Google Scholar 

  27. Song, H., Wang, W., Wang, J., Wang, R.: Collaborative deep networks for pedestrian detection. In: IEEE Third International Conference on Multimedia Big Data, pp. 146–153 (2017)

    Google Scholar 

  28. Tian, Y., Luo, P., Wang, X., Tang, X.: Pedestrian detection aided by deep learning semantic tasks, pp. 5079–5087 (2014)

    Google Scholar 

  29. Wang, X.: Intelligent multi-camera video surveillance: a review. Pattern Recognit. Lett. 34, 3–19 (2013)

    Article  Google Scholar 

  30. Xiao, T., Li, S., Wang, B., Lin, L., Wang, X.: End-to-end deep learning for person search (2016)

    Google Scholar 

  31. Xiao, T., Li, S., Wang, B., Lin, L., Wang, X.: Joint detection and identification feature learning for person search. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017

    Google Scholar 

  32. Yang, B., Yan, J., Lei, Z., Li, S.Z.: Convolutional channel features. In: IEEE International Conference on Computer Vision, pp. 82–90 (2015)

    Google Scholar 

  33. Zhang, L., Lin, L., Liang, X., He, K.: Is faster R-CNN doing well for pedestrian detection? In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 443–457. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_28

    Chapter  Google Scholar 

  34. Zhang, S., Benenson, R., Schiele, B.: Filtered channel features for pedestrian detection, pp. 1751–1760 (2015)

    Google Scholar 

  35. Zhao, R., Ouyang, W., Wang, X.: Unsupervised salience learning for person re-identification. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3586–3593 (2013)

    Google Scholar 

  36. Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., Tian, Q.: Scalable person re-identification: a benchmark. In: IEEE International Conference on Computer Vision, pp. 1116–1124 (2015)

    Google Scholar 

  37. Zheng, L., Zhang, H., Sun, S., Chandraker, M., Yang, Y., Tian, Q.: Person re-identification in the wild, pp. 3346–3355 (2016)

    Google Scholar 

  38. Zheng, Z., Zheng, L., Yang, Y.: A discriminatively learned CNN embedding for person re-identification (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, Z., Zhang, L. (2019). End-to-End Detection and Re-identification Integrated Net for Person Search. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11362. Springer, Cham. https://doi.org/10.1007/978-3-030-20890-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20890-5_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20889-9

  • Online ISBN: 978-3-030-20890-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics