Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Unified Approach to the Processing of Hyperspectral Images

  • Conference paper
  • First Online:
Mathematical Morphology and Its Applications to Signal and Image Processing (ISMM 2019)

Abstract

Since vector fields, such as RGB-color, multispectral or hyperspectral images, possess only limited algebraic and ordering structures they do not lend themselves easily to image processing methods. However, for fields of symmetric matrices a sufficiently elaborate calculus, that includes, for example, suitable notions of multiplication, supremum/infimum and concatenation with real functions, is available. In this article a vector field is coded as a matrix field, which is then processed by means of the matrix valued counterparts of image processing methods. An approximate decoding step transforms a processed matrix field back into a vector field. Here we focus on proposing suitable notions of a pseudo-supremum/infimum of two vectors/colors and a PDE-based dilation/erosion process of color images as a proof-of-concept. In principle there is no restriction on the dimension of the vectors considered. Experiments, mainly on RGB-images for presentation reasons, will reveal the merits and the shortcomings of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aptoula, E., Lefèvre, S.: A comparative study on multivariate mathematical morphology. Pattern Recognit. 40(11), 2914–2929 (2007)

    Article  Google Scholar 

  2. Bhatia, R.: Matrix Analysis. Graduate Texts in Mathematics, vol. 169, 1st edn. Springer, Heidelberg (1996). https://doi.org/10.1007/978-1-4612-0653-8

    Book  MATH  Google Scholar 

  3. Braun, K.M., Balasubramanian, R., Eschbach, R.: Development and evaluation of six gamut-mapping algorithms for pictorial images. In: Color Imaging Conference, pp. 144–148. IS&T - The Society for Imaging Science and Technology (1999)

    Google Scholar 

  4. Brockett, R.W., Maragos, P.: Evolution equations for continuous-scale morphology. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, San Francisco, CA, vol. 3, pp. 125–128, March 1992

    Google Scholar 

  5. Burgeth, B., Bruhn, A., Didas, S., Weickert, J., Welk, M.: Morphology for tensor data: ordering versus PDE-based approach. Image Vis. Comput. 25(4), 496–511 (2007)

    Article  Google Scholar 

  6. Burgeth, B., Bruhn, A., Papenberg, N., Welk, M., Weickert, J.: Mathematical morphology for tensor data induced by the Loewner ordering in higher dimensions. Signal Process. 87(2), 277–290 (2007)

    Article  Google Scholar 

  7. Burgeth, B., Didas, S., Florack, L., Weickert, J.: A generic approach to diffusion filtering of matrix-fields. Computing 81, 179–197 (2007)

    Article  MathSciNet  Google Scholar 

  8. Burgeth, B., Didas, S., Florack, L., Weickert, J.: A generic approach to the filtering of matrix fields with singular PDEs. In: Sgallari, F., Murli, A., Paragios, N. (eds.) SSVM 2007. LNCS, vol. 4485, pp. 556–567. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72823-8_48

    Chapter  Google Scholar 

  9. Burgeth, B., Kleefeld, A.: An approach to color-morphology based on Einstein addition and Loewner order. Pattern Recognit. Lett. 47, 29–39 (2014)

    Article  Google Scholar 

  10. Burgeth, B., Kleefeld, A.: Towards processing fields of general real-valued square matrices. In: Schultz, T., Özarslan, E., Hotz, I. (eds.) Modeling, Analysis, and Visualization of Anisotropy. MV, pp. 115–144. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61358-1_6

    Chapter  MATH  Google Scholar 

  11. Burgeth, B., Pizarro, L., Breuß, M., Weickert, J.: Adaptive continuous-scale morphology for matrix fields. Int. J. Comput. Vis. 92(2), 146–161 (2011)

    Article  MathSciNet  Google Scholar 

  12. Burgeth, B., Pizarro, L., Didas, S., Weickert, J.: 3D-coherence-enhancing diffusion filtering for matrix fields. In: Florack, L., Duits, R., Jongbloed, G., van Lieshout, M.C., Davies, L. (eds.) Mathematical Methods for Signal and Image Analysis and Representation. CIVI, vol. 41, pp. 49–63. Springer, London (2012). https://doi.org/10.1007/978-1-4471-2353-8_3

    Chapter  MATH  Google Scholar 

  13. Eckart, C., Young, G.: The approximation of one matrix by another of lower rank. Psychometrika 1(1), 211–218 (1936)

    Article  Google Scholar 

  14. Golub, G.H., Hoffman, A., Stewart, G.W.: A generalization of the Eckart-Young-Mirsky matrix approximation theorem. Linear Algebra Appl. 88–89, 317–327 (1987)

    Article  MathSciNet  Google Scholar 

  15. Kamal, O., et al.: Multispectral image processing for detail reconstruction and enhancement of Maya murals from La Pasadita, Guatemala. J. Archaeol. Sci. 26(11), 1391–1407 (1999)

    Article  Google Scholar 

  16. Kleefeld, A., Burgeth, B.: Processing multispectral images via mathematical morphology. In: Hotz, I., Schultz, T. (eds.) Visualization and Processing of Higher Order Descriptors for Multi-Valued Data. MV, pp. 129–148. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15090-1_7

    Chapter  MATH  Google Scholar 

  17. Köppen, M., Nowack, C., Rösel, G.: Pareto-morphology for color image processing. In: Ersbøll, B.K. (ed.) Proceedings of the Eleventh Scandinavian Conference on Image Analysis, vol. 1, pp. 195–202. Pattern Recognition Society of Denmark, Kangerlussuaq, Greenland (1999)

    Google Scholar 

  18. Ngadi, M.O., Liu, L.: Chapter 4 - hyperspectral image processing techniques. In: Sun, D.W. (ed.) Hyperspectral Imaging for Food Quality Analysis and Control, pp. 99–127. Academic Press, San Diego (2010)

    Chapter  Google Scholar 

  19. Rouy, E., Tourin, A.: A viscosity solutions approach to shape-from-shading. SIAM J. Numer. Anal. 29, 867–884 (1992)

    Article  MathSciNet  Google Scholar 

  20. Serra, J.: Anamorphoses and function lattices (multivalued morphology). In: Dougherty, E.R. (ed.) Mathematical Morphology in Image Processing, pp. 483–523. Marcel Dekker, New York (1993)

    Google Scholar 

  21. Serra, J.: The “false colour” problem. In: Wilkinson, M.H.F., Roerdink, J.B.T.M. (eds.) ISMM 2009. LNCS, vol. 5720, pp. 13–23. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03613-2_2

    Chapter  Google Scholar 

  22. Tsakanikas, P., Pavlidis, D., Nychas, G.J.: High throughput multispectral image processing with applications in food science. PLOS ONE 10(10), 1–15 (2015)

    Article  Google Scholar 

  23. Unay, D.: Multispectral image processing and pattern recognition techniques for quality inspection of apple fruits. Presses univ. de Louvain (2006)

    Google Scholar 

  24. van den Boomgaard, R.: Mathematical morphology: extensions towards computer vision. Ph.D. thesis, University of Amsterdam, The Netherlands (1992)

    Google Scholar 

  25. Boomgaard, R.: Numerical solution schemes for continuous-scale morphology. In: Nielsen, M., Johansen, P., Olsen, O.F., Weickert, J. (eds.) Scale-Space 1999. LNCS, vol. 1682, pp. 199–210. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48236-9_18

    Chapter  Google Scholar 

  26. Yang, C.C., Chao, K., Chen, Y.R.: Development of multispectral image processing algorithms for identification of wholesome, septicemic, and inflammatory process chickens. J. Food Eng. 69(2), 225–234 (2005)

    Article  Google Scholar 

  27. Yeh, C.: Colour morphology and its approaches. Ph.D. thesis, University of Birmingham, UK (2015)

    Google Scholar 

  28. Yoon, S.-C., Park, B.: Hyperspectral image processing methods. In: Park, B., Lu, R. (eds.) Hyperspectral Imaging Technology in Food and Agriculture. FES, pp. 81–101. Springer, New York (2015). https://doi.org/10.1007/978-1-4939-2836-1_4

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Burgeth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Burgeth, B., Didas, S., Kleefeld, A. (2019). A Unified Approach to the Processing of Hyperspectral Images. In: Burgeth, B., Kleefeld, A., Naegel, B., Passat, N., Perret, B. (eds) Mathematical Morphology and Its Applications to Signal and Image Processing. ISMM 2019. Lecture Notes in Computer Science(), vol 11564. Springer, Cham. https://doi.org/10.1007/978-3-030-20867-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20867-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20866-0

  • Online ISBN: 978-3-030-20867-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics