Abstract
Since vector fields, such as RGB-color, multispectral or hyperspectral images, possess only limited algebraic and ordering structures they do not lend themselves easily to image processing methods. However, for fields of symmetric matrices a sufficiently elaborate calculus, that includes, for example, suitable notions of multiplication, supremum/infimum and concatenation with real functions, is available. In this article a vector field is coded as a matrix field, which is then processed by means of the matrix valued counterparts of image processing methods. An approximate decoding step transforms a processed matrix field back into a vector field. Here we focus on proposing suitable notions of a pseudo-supremum/infimum of two vectors/colors and a PDE-based dilation/erosion process of color images as a proof-of-concept. In principle there is no restriction on the dimension of the vectors considered. Experiments, mainly on RGB-images for presentation reasons, will reveal the merits and the shortcomings of the proposed methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aptoula, E., Lefèvre, S.: A comparative study on multivariate mathematical morphology. Pattern Recognit. 40(11), 2914–2929 (2007)
Bhatia, R.: Matrix Analysis. Graduate Texts in Mathematics, vol. 169, 1st edn. Springer, Heidelberg (1996). https://doi.org/10.1007/978-1-4612-0653-8
Braun, K.M., Balasubramanian, R., Eschbach, R.: Development and evaluation of six gamut-mapping algorithms for pictorial images. In: Color Imaging Conference, pp. 144–148. IS&T - The Society for Imaging Science and Technology (1999)
Brockett, R.W., Maragos, P.: Evolution equations for continuous-scale morphology. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, San Francisco, CA, vol. 3, pp. 125–128, March 1992
Burgeth, B., Bruhn, A., Didas, S., Weickert, J., Welk, M.: Morphology for tensor data: ordering versus PDE-based approach. Image Vis. Comput. 25(4), 496–511 (2007)
Burgeth, B., Bruhn, A., Papenberg, N., Welk, M., Weickert, J.: Mathematical morphology for tensor data induced by the Loewner ordering in higher dimensions. Signal Process. 87(2), 277–290 (2007)
Burgeth, B., Didas, S., Florack, L., Weickert, J.: A generic approach to diffusion filtering of matrix-fields. Computing 81, 179–197 (2007)
Burgeth, B., Didas, S., Florack, L., Weickert, J.: A generic approach to the filtering of matrix fields with singular PDEs. In: Sgallari, F., Murli, A., Paragios, N. (eds.) SSVM 2007. LNCS, vol. 4485, pp. 556–567. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72823-8_48
Burgeth, B., Kleefeld, A.: An approach to color-morphology based on Einstein addition and Loewner order. Pattern Recognit. Lett. 47, 29–39 (2014)
Burgeth, B., Kleefeld, A.: Towards processing fields of general real-valued square matrices. In: Schultz, T., Özarslan, E., Hotz, I. (eds.) Modeling, Analysis, and Visualization of Anisotropy. MV, pp. 115–144. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61358-1_6
Burgeth, B., Pizarro, L., Breuß, M., Weickert, J.: Adaptive continuous-scale morphology for matrix fields. Int. J. Comput. Vis. 92(2), 146–161 (2011)
Burgeth, B., Pizarro, L., Didas, S., Weickert, J.: 3D-coherence-enhancing diffusion filtering for matrix fields. In: Florack, L., Duits, R., Jongbloed, G., van Lieshout, M.C., Davies, L. (eds.) Mathematical Methods for Signal and Image Analysis and Representation. CIVI, vol. 41, pp. 49–63. Springer, London (2012). https://doi.org/10.1007/978-1-4471-2353-8_3
Eckart, C., Young, G.: The approximation of one matrix by another of lower rank. Psychometrika 1(1), 211–218 (1936)
Golub, G.H., Hoffman, A., Stewart, G.W.: A generalization of the Eckart-Young-Mirsky matrix approximation theorem. Linear Algebra Appl. 88–89, 317–327 (1987)
Kamal, O., et al.: Multispectral image processing for detail reconstruction and enhancement of Maya murals from La Pasadita, Guatemala. J. Archaeol. Sci. 26(11), 1391–1407 (1999)
Kleefeld, A., Burgeth, B.: Processing multispectral images via mathematical morphology. In: Hotz, I., Schultz, T. (eds.) Visualization and Processing of Higher Order Descriptors for Multi-Valued Data. MV, pp. 129–148. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15090-1_7
Köppen, M., Nowack, C., Rösel, G.: Pareto-morphology for color image processing. In: Ersbøll, B.K. (ed.) Proceedings of the Eleventh Scandinavian Conference on Image Analysis, vol. 1, pp. 195–202. Pattern Recognition Society of Denmark, Kangerlussuaq, Greenland (1999)
Ngadi, M.O., Liu, L.: Chapter 4 - hyperspectral image processing techniques. In: Sun, D.W. (ed.) Hyperspectral Imaging for Food Quality Analysis and Control, pp. 99–127. Academic Press, San Diego (2010)
Rouy, E., Tourin, A.: A viscosity solutions approach to shape-from-shading. SIAM J. Numer. Anal. 29, 867–884 (1992)
Serra, J.: Anamorphoses and function lattices (multivalued morphology). In: Dougherty, E.R. (ed.) Mathematical Morphology in Image Processing, pp. 483–523. Marcel Dekker, New York (1993)
Serra, J.: The “false colour” problem. In: Wilkinson, M.H.F., Roerdink, J.B.T.M. (eds.) ISMM 2009. LNCS, vol. 5720, pp. 13–23. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03613-2_2
Tsakanikas, P., Pavlidis, D., Nychas, G.J.: High throughput multispectral image processing with applications in food science. PLOS ONE 10(10), 1–15 (2015)
Unay, D.: Multispectral image processing and pattern recognition techniques for quality inspection of apple fruits. Presses univ. de Louvain (2006)
van den Boomgaard, R.: Mathematical morphology: extensions towards computer vision. Ph.D. thesis, University of Amsterdam, The Netherlands (1992)
Boomgaard, R.: Numerical solution schemes for continuous-scale morphology. In: Nielsen, M., Johansen, P., Olsen, O.F., Weickert, J. (eds.) Scale-Space 1999. LNCS, vol. 1682, pp. 199–210. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48236-9_18
Yang, C.C., Chao, K., Chen, Y.R.: Development of multispectral image processing algorithms for identification of wholesome, septicemic, and inflammatory process chickens. J. Food Eng. 69(2), 225–234 (2005)
Yeh, C.: Colour morphology and its approaches. Ph.D. thesis, University of Birmingham, UK (2015)
Yoon, S.-C., Park, B.: Hyperspectral image processing methods. In: Park, B., Lu, R. (eds.) Hyperspectral Imaging Technology in Food and Agriculture. FES, pp. 81–101. Springer, New York (2015). https://doi.org/10.1007/978-1-4939-2836-1_4
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Burgeth, B., Didas, S., Kleefeld, A. (2019). A Unified Approach to the Processing of Hyperspectral Images. In: Burgeth, B., Kleefeld, A., Naegel, B., Passat, N., Perret, B. (eds) Mathematical Morphology and Its Applications to Signal and Image Processing. ISMM 2019. Lecture Notes in Computer Science(), vol 11564. Springer, Cham. https://doi.org/10.1007/978-3-030-20867-7_16
Download citation
DOI: https://doi.org/10.1007/978-3-030-20867-7_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-20866-0
Online ISBN: 978-3-030-20867-7
eBook Packages: Computer ScienceComputer Science (R0)